
Improved Algorithm for Reachability in d-VASS
Yuxi Fu #

BASICS, Shanghai Jiao Tong University, China

Qizhe Yang1 #

Shanghai Normal University, China

Yangluo Zheng #

BASICS, Shanghai Jiao Tong University, China

Abstract
An Fd upper bound for the reachability problem in vector addition systems with states (VASS)
in fixed dimension is given, where Fd is the d-th level of the Grzegorczyk hierarchy of complexity
classes. The new algorithm combines the idea of the linear path scheme characterization of the
reachability in the 2-dimension VASSes with the general decomposition algorithm by Mayr, Kosaraju
and Lambert. The result improves the Fd+4 upper bound due to Leroux and Schmitz (LICS 2019).

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Logic and verification

Keywords and phrases Petri net, vector addition system, reachability

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.136

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2404.14781

Funding The support from the National Natural Science Foundation of China (62072299) is ac-
knowledged.

Acknowledgements We thank Weijun Chen, Huan Long, Hao Wu and Qiang Yin for proofreading
various versions of this paper.

1 Introduction

Petri nets, or equivalently vector addition system with states (VASS), are a well studied
model of concurrency. A VASS consists of a finite state control where each state transition has
as its effect an integer-valued vector, and its configurations are pairs of a state and a vector
with natural number components. A transition may lead from one configuration to another by
adding its effect component-wise, conditioned on that the components of the resulting vector
remain non-negative. The reachability problem, which asks whether from one configuration
there is a path reaching another configuration, lies in the center of the algorithmic theory
of Petri nets and has found a wide range of applications due to its generic nature. Since
the problem was shown to be decidable by Mayr [17] in 1981, its computational complexity
had been a long-standing open problem in the field. In 2015, Leroux and Schmitz [14]
presented the first complexity upper bound, stating that the reachability problem is cubic-
Ackermannian. This was later improved to an Ackermannian upper bound in 2019, again by
Leroux and Schmitz [15]. Regarding the hardness, in 2021 seminal works by Czerwiński and
Orlikowski [6], and independently by Leroux [13], provided matching Ackermannian lower
bounds, settling the exact complexity of the problem.

1 corresponding author

EA
T
C
S

© Yuxi Fu, Qizhe Yang , and Yangluo Zheng;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson;
Article No. 136; pp. 136:1–136:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fu-yx@cs.sjtu.edu.cn
mailto:qzyang@shnu.edu.cn
https://orcid.org/0009-0000-9010-5364
mailto:wunschunreif@sjtu.edu.cn
https://orcid.org/0009-0000-1028-5458
https://doi.org/10.4230/LIPIcs.ICALP.2024.136
https://arxiv.org/abs/2404.14781
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

136:2 Improved Algorithm for Reachability in d-VASS

Concerning the parameterization by dimension, i.e. the reachability problem in d-
dimensional VASSes where d is fixed, there is still a gap in the known complexity bounds.
Currently, we only have exact complexity bounds for dimension one and two [7, 1]. For
dimension d ≥ 3, the result of Leroux and Schmitz [15] shows that the problem is in Fd+4,
the (d+4)-th level of the Grzegorczyk hierarchy of complexity classes. Note that a recent
work by Yang and Fu [22] points out that the problem for dimension 3 is in F3 = TOWER.
On the other hand, the best known lower bound by Czerwiński, Jecker, Lasota, Leroux and
Orlikowski [5] states that reachability in (2d+3)-dimensional VASSes is Fd-hard. Motivated
by this gap, our paper focuses on the computational complexity of reachability problem in
the fixed-dimensional VASSes.

Our contribution

In this paper we show that the reachability problem in the d-dimensional VASS is in Fd

for d ≥ 3, improving the previous Fd+4 upper bound by Leroux and Schmitz [15], and
generalizing the tower upper bound for the reachability problem in 3-VASS [22]. The new
upper bound is obtained with the help of two novel technical lemmas.
1. Our main technical tool (Theorem 3.4) is a generalization of the linear path scheme char-

acterization for the reachability relation in the 2-dimensional VASSes [1]. By borrowing
the key idea from the work of Yang and Fu [22], we show that as long as the “geometric
dimension” of a VASS (that is, the dimension of the vector space spanned by the effects
of cyclic paths) is bounded by 2, its reachability relation can be characterized by short
linear path schemes. We then apply the lemma to simplify the KLMST algorithm so that
(i) a VASS is replaced by a short linear path scheme whenever its geometric dimension is
no more than 2 and (ii) the linear path schemes will not be decomposed further. It is
then routine [15], using the tools from [21], to show that the reachability problem in the
d-dimensional VASS is in Fd+1 for all d ≥ 3.

2. Our second lemma (Lemma 6.3) allows us to improve further the bound from Fd+1 to Fd.
This is done by a careful analysis of the properties of the fast-growing functions [21].

Due to space limitation the proofs of the two lemmas are placed in the appendices.

Organization

Section 2 fixes notation, defines the VASS model and its reachability problem. Section 3
generalizes the linear path scheme characterization [1] to VASSes whose geometric dimension
are bounded by 2. Section 4 recalls the characterization system of linear inequalities for
linear path schemes. Section 5 makes use of the results of Section 3 to give an improved
version of the classic KLMST decomposition algorithm. Section 6 analyzes the complexity of
our modified algorithm, proving the main result. Section 7 concludes. Proofs omitted from
the main text can be found in the appendices.

2 Preliminaries

We use N,Z,Q to denote respectively the set of non-negative integers, integers, and rational
numbers. Let n ∈ N be a number, we write [n] for the range {1, 2, . . . , n}. Let u, v ∈ Xd be d-
dimensional vectors where X can be any one of N,Z,Q. We write v(i) for the i-th component
of v where i ∈ [d], so v = (v(1), . . . , v(d)). The maximum norm of v is defined to be
∥v∥ := maxi∈[d] |v(i)|. We extend component-wise the order ≤ for vectors in Xd, so u ≤ v if

Y. Fu, Q. Yang, and Y. Zheng 136:3

and only if u(i) ≤ v(i) for all i ∈ [d]. Addition and subtraction of vectors are also component-
wise, so (u + v)(i) = u(i) + v(i) for all i ∈ [d]. Define supp(v) := {i ∈ [d] : v(i) ̸= 0} to be
the set of indices of non-zero components of v. This notation is extended to sets of vectors
naturally, so supp(S) =

⋃
v∈S supp(v) for any set S ⊆ Xd.

For technical reasons we introduce the symbol ω that stands for the infinite element.
Let Nω := N ∪ {ω}. We stipulate that n < ω for all n ∈ N, and x + ω = ω + x = ω for all
x ∈ Z. Define the partial order ⊑ over Nω so that x ⊑ y if and only if x = y or y = ω for all
x, y ∈ Nω. The relation ⊑ is also extended component-wise to vectors in Nd

ω.
Let Σ be a finite alphabet and s, t ∈ Σ∗ be two strings over Σ. We write st for the

concatenation of s and t, and sn for the concatenation of n copies of s where n ∈ N. If
s = a1a2 . . . aℓ where a1, . . . , aℓ ∈ Σ, we write |s| := ℓ for the length of s, and s[i . . . j] :=
aiai+1 . . . aj for the substring of s between indices i and j where 1 ≤ i ≤ j ≤ |s|.

2.1 Vector Addition Systems with States
Let d ≥ 0 be an integer. A d-dimensional vector addition system with states (d-VASS) is
a pair G = (Q, T) where Q is a finite set of states and T ⊆ Q × Zd × Q is a finite set of
transitions. Clearly a VASS can also be viewed as a directed graph with edges labelled by
integer vectors. Given a word π = (p1, a1, q1)(p2, a2, q2) . . . (pn, an, qn) ∈ T ∗ over transitions,
we say that π is a path from p1 to qn if qi = pi+1 for all i = 1, . . . , n − 1. It is a cycle
if we further have p1 = qn. The effect of π is defined to be ∆(π) :=

∑n
i=1 ai, and the

action word of π is the word JπK := a1a2 . . . an over Zd. The Parikh image of π is the
function ϕ ∈ NT mapping each transition to its number of occurrences in π. Given a function
ϕ ∈ NT we also define ∆(ϕ) :=

∑
t=(p,a,q)∈T ϕ(t) · a. Note that ∆(ϕ) = ∆(π) if ϕ is the

Parikh image of π. Let L ⊆ T ∗ be a language (i.e. subset of words), we define its effect as
∆(L) := {∆(π) : π ∈ L}.

The norm of a transition t = (p, a, q) is defined by ∥t∥ := ∥a∥. The norm of a path
π = t1t2 . . . tn is ∥π∥ := maxi∈[n] ∥ti∥. For a d-VASS G = (Q, T) we write ∥T∥ := max{∥t∥ :
t ∈ T}. The size of G is defined by

|G| := |Q| + |T | + d · |T | · ∥T∥ . (1)

Semantics of VASSes

Let G = (Q, T) be a d-VASS. A configuration of G is a pair of a state p ∈ Q and a vector
v ∈ Zd, written as p(v). Let D ⊆ Zd, we define the D-semantics for G as follows. For
each transition t = (p, a, q) ∈ T , the one-step transition relation t−→D relates all pairs of
configurations of the form (p(u), q(v)) where u, v ∈ D and v = u + a. Then for a word
π = t1t2 . . . tn ∈ T ∗, the relation π−→D is the composition π−→D := t1−→D ◦ · · · ◦ tn−→D. So
p(u) π−→D q(v) if and only if there are configurations p0(u0), . . . , pn(un) ∈ Q × D such that

p(u) = p0(u0) t1−→D p1(u1) t2−→D · · · tn−→D pn(un) = q(v). (2)

Also, when π = ϵ is the empty word, the relation ϵ−→D is the identity relation over Q×D. Note
that π−→D is non-empty only if π is a path. When p(u) π−→D q(v) we also say that π induces
(or is) a D-run from p(u) to q(v). We emphasize that all configurations on this run lie in D,
and that they are uniquely determined by p(u) and π. For a language L ⊆ T ∗ we define L−→D

as
⋃

π∈L
π−→D. Finally, the D-reachability relation of G is defined to be ∗−→D := T ∗

−−→D.
For the above definitions, we shall often omit the subscript D when D = Nd.

ICALP 2024

136:4 Improved Algorithm for Reachability in d-VASS

We mention that in Section 5 we need to generalize the VASS semantics to configurations
in Q × Nd

ω, allowing ω components in vectors. The definitions of t−→Nd
ω
, π−→Nd

ω
, and ∗−→Nd

ω
are

similar to the above.

Reachability problem

The reachability problem in vector addition systems with states is formulated as follows:

Reachability in d-Dimensional Vector Addition System with States
Input: A d-dimensional VASS G = (Q, T), two configurations p(u), q(v) ∈ Q × Nd.
Question: Does p(u) ∗−→Nd q(v) hold in G?

Note that we study the reachability problem for fixed-dimensional VASSes, where the
dimension d is treated as a constant to allow more fine-grained analysis. So we shall use the
big-O notation to hide constants that may depend on d. The general problem where the
dimension can be part of the input was already shown to be Ackermann-complete [6, 13].

Cycle spaces and geometric dimensions

One of the key insights of [15] is a new termination argument for the KLMST decomposition
algorithm based on the dimensions of vector spaces spanned by cycles in VASSes, which
yielded the primitive recursive upper bound of VASS reachability problem in fixed dimensions.
The vector spaces spanned by cycles also play an important role in our work.

▶ Definition 2.1. Let G be a d-VASS. The cycle space of G is the vector space Cyc(G) ⊆ Qd

spanned by the effects of all cycles in G, that is:

Cyc(G) := span{∆(β) : β is a cycle in G}. (3)

The dimension of the cycle space of G is called the geometric dimension of G. We say G is
geometrically k-dimensional if dim(Cyc(G)) ≤ k.

3 Flattability of Geometrically 2-dimensional VASSes

A VASS is flat if each of its states lies on at most one cycle. Flat VASSes form an important
subclass of VASSes due to its connection to Presburger arithmetic, and we refer the readers
to [12] for a survey. In dimension 2, it was proved in [1] that 2-VASSes enjoy a stronger form
of flat representation, known as the linear path schemes. A linear path scheme is a regular
expression of the form α0β∗

1α1 . . . β∗
kαk where α0, . . . αk are paths and β1, . . . , βk are cycles

of the VASS, such that they form a path when joined together. The results of [1] show that
the reachability relation of every 2-VASS can be captured by short linear path schemes.

Linear path schemes are extremely useful as they can be fully characterized by linear
inequality systems so that standard tools for linear or integer programming can be applied.
In this section, we generalize the results in [1] and show that the reachability relation of any
d-VASS whose geometric dimension is bounded by 2 can also be captured by short linear
path schemes.

Our proof follows closely to the lines of [1]. Given a geometrically 2-dimensional VASS G,
we first cover Nd by the following two regions: one for the region far away from every axis:

O := {u ∈ Nd : u(i) ≥ D for all i ∈ [d]} (4)

Y. Fu, Q. Yang, and Y. Zheng 136:5

p(1, 0, −1) (0, 1, 1)

G

p′(1, 0) (0, 1)

G′

p′′(1, −1) (0, 1)

G′′

Figure 1 A geometrically 2-dimensional VASS G and two possible projections of it.

where D is some properly chosen threshold; the other one for the region close to some axis:

L := {u ∈ Nd : u(i) ≤ D′ for some i ∈ [d]} (5)

where D′ is chosen slightly above D to create an overlap with O. Let π be a run that
we are going to capture by linear path schemes. We can extract its maximal prefix that
lies completely in either O or L, depending on where π starts. This prefix must end at a
configuration that lies in L ∩ O, if we haven’t touched the end of π. From this configuration
we then extract a maximal cycle that also ends in L ∩ O. Continuing this fashion, we can
break π into segments of runs that lie completely in O or L, interleaved by cycles that start
and end in O (actually in L ∩ O). Note that the number of such cycles cannot exceed the
number of states of G since they are maximal. Now we only need to capture the following
three types of runs by short linear path schemes:
1. Runs that are cycles starting and ending in O.

This will be handled in Section A.4 in the appendix. Briefly speaking, since the geometric
dimension of G is 2, the effect of such a cycle must belong to a plane in Zd. We will find
a clever way to project this plane to a coordinate plane, and then project the d-VASS G

onto this plane to get a 2-VASS. This is made possible by a novel technique called the
“sign-reflecting projection” developed in Section A.3. Intuitively speaking, for any vector
in a plane we are able to determine whether it belongs to a certain orthant by observing
only 2 entries of this vector. The d-VASS can then be projected onto these 2 coordinates.
(See Example 3.1 for a more concrete demonstration.) Now we apply the results of [1] to
obtain a linear path scheme that captures the projected cyclic run. Combined with a
lemma in [16], the projection guarantees that we can safely project it back to get a linear
path scheme for the run in G.

2. Runs that lie completely in O.
This is just an easy corollary of the first type, and will also be handled in Section A.4.
Just note that any run can be broken into a series of simple paths interleaved by cycles.

3. Runs that lie completely in L.
This will be handled in Section A.5, by a long and tedious case analysis. In principle, we
are going to argue that any such run essentially corresponds to a run in some (d−1)-VASS,
so that we can use induction.

▶ Example 3.1. Consider the geometrically 2-dimensional 3-VASS G as shown in Figure
1. It consists of a single state p and two transitions with effects (1, 0, −1) and (0, 1, 1). In
order to apply the results of [1], one would like to derive a 2-VASS from G that reflects
runs in G. A simple idea is to discard one coordinate of G. Two possibilities of this idea
are shown in Figure 1 as G′, which discards the third coordinate, and G′′, which discards
the second coordinate. However, not all of them are satisfactory. For example, the legal run
p(0, 0) (1,0)−−−→ p(1, 0) in G′ reflects an illegal run p(0, 0, 0) (1,0,−1)−−−−−→ p(1, 0, −1) in G where the
third coordinate goes negative. On the other hand, all runs in G′′ can be safely projected
back to a run in G. To see this, just observe that for any vector v in the linear span of
(1, 0, −1) and (0, 1, 1), v ≥ 0 if and only if v(1) ≥ 0 and v(3) ≥ 0. Thus we can safely discard
the second coordinate.

ICALP 2024

136:6 Improved Algorithm for Reachability in d-VASS

In general, the “sign-reflecting projection” developed in Section A.3 shows that any
geometrically 2-dimensional VASS can be projected onto two coordinates so that the signs of
these two coordinates reflects the signs of other coordinates.

In the rest of this section we just state formally our main technical results. The detailed
proofs are placed in the appendix.

3.1 Linear Path Schemes
A linear path scheme (LPS) is a pair (G, Λ) where G is a VASS and Λ is a regular expression
of the form Λ = α0β∗

1α1 . . . β∗
kαk such that α0, . . . , αk are paths in G and β1, . . . , βk are

cycles in G, and α0β1α1 . . . βkαk is a path in G. We say an LPS (G, Λ) is compatible to a
VASS G′ if G′ contains all states and transitions in Λ. Very often we shall omit the VASS
G and say that Λ on its own is an LPS, with G understood as any VASS to which Λ is
compatible. We write |Λ| = |α0β1α1 . . . βkαk| for the length of Λ, ∥Λ∥ = ∥α0β1α1 . . . βkαk∥
for its norm, and |Λ|∗ = k for the number of cycles in Λ.

We also treat Λ as the language defined by it, and thus for two configurations p(u) and
q(v) we write p(u) Λ−→D q(v) if and only if there exists e1, . . . , ek ∈ N such that

p(u)
α0β

e1
1 α1...β

ek
k

αk−−−−−−−−−−−→D q(v). (6)

Positive linear path schemes

A positive LPS is a regular expression of the form Λ+ = α0β+
1 α1 . . . β+

k αk which is similar
to a linear path scheme except that we require each cycle to be used at least once. We write
p(u) Λ+

−−→D q(v) if and only if there are positive integers e1, . . . , ek ∈ N>0 such that

p(u)
α0β

e1
1 α1...β

ek
k

αk−−−−−−−−−−−→D q(v). (7)

A path π is said to be admitted by Λ+ if π = α0βe1
1 α1 . . . βek

k αk for some e1, . . . , ek ∈ N>0.
We prefer positive LPSes as they can be easily characterized by linear inequality systems
(see Section 4 for details). In fact, positive LPSes can be easily obtained from LPSes:

▶ Lemma 3.2. For every linear path scheme Λ there exists a finite set S of positive linear
path schemes compatible to the same VASSes with Λ, such that Λ−→ =

⋃
Λ+∈S

Λ+

−−→ and
|Λ+| ≤ |Λ| for every Λ+ ∈ S.

Proof. Suppose Λ = α0β∗
1α1 . . . β∗

kαk. For each cycle component β∗
i in Λ we replace it by

either β+
i or an empty word nondeterministically. Let S be the set of all resulting positive

LPSes. It is obvious that S satisfies the desired properties. ◀

3.2 Main Results
The main results of this section is stated as follows.

▶ Theorem 3.3. Let G = (Q, T) be a geometrically 2-dimensional d-VASS. For every pair
of configurations p(u), q(v) ∈ Q × Nd with p(u) ∗−→ q(v) there exists a positive LPS Λ+

compatible to G such that p(u) Λ+

−−→ q(v) and |Λ+| ≤ |G|O(1).

We remark that the big-O term here and elsewhere in the paper hides constant that may
depend on the dimension d, but does not depend on G, u, v or anything else.

By Lemma 3.2 we know that positive LPSes can be obtained from LPSes. Thus theorem
3.3 follows easily from the following relaxed theorem, which will be proved in the appendix.

Y. Fu, Q. Yang, and Y. Zheng 136:7

▶ Theorem 3.4. Let G = (Q, T) be a geometrically 2-dimensional d-VASS. For every pair
of configurations p(u), q(v) ∈ Q × Nd with p(u) ∗−→ q(v) there exists an LPS Λ compatible to
G such that p(u) Λ−→ q(v) and |Λ| ≤ |G|O(1).

4 Characteristic Systems for Linear Path Schemes

The property that linear path schemes can be fully characterized by linear inequality systems
is exploited in [2] to derive the PSPACE upper bound of the reachability problem in 2-VASSes.
Here we recall this linear inequality system and its properties.

We mainly focus on positive linear path schemes. Fix Λ = α0β+
1 α1 . . . β+

k αk to be a
positive LPS from state p to q that is compatible to some d-VASS G = (Q, T), where k = |Λ|∗
is the number of cycles in Λ.

▶ Definition 4.1 (cf. [2, Lem. 14]). The characteristic system ELPS(Λ) of the positive LPS Λ
is the system of linear inequalities such that a triple h = (u, e, v) ∈ Nd × Nk × Nd satisfies
ELPS(Λ), written h |= ELPS(Λ), if and only if the following conditions hold:

1. for every i = 1, . . . , k, e(i) ≥ 1;
2. for every i = 0, . . . , k and every j = 1, . . . , |αi|,

u + ∆(α0β
e(1)
1 α1 . . . αi−1β

e(i)
i) + ∆(αi[1 . . . j]) ≥ 0; (8)

3. for every i = 1, . . . , k and every j = 1, . . . , |βi|,

u + ∆(α0β
e(1)
1 α1 . . .β

e(i−1)
i−1 αi−1) + ∆(βi[1 . . . j]) ≥ 0, (9)

u + ∆(α0β
e(1)
1 α1 . . .β

e(i−1)
i−1 αi−1β

e(i)−1
i) + ∆(βi[1 . . . j]) ≥ 0; (10)

4. and finally, u + ∆(α0β
e(1)
1 α1 . . . β

e(k)
k αk) = v.

The readers can easily verify that these constraints are indeed linear in terms of u, e, v.
The next lemma shows that ELPS(Λ) indeed captures all runs admitted by Λ.

▶ Lemma 4.2. Let G be a d-VASS and Λ = α0β+
1 α1 . . . β+

k αk be a positive LPS from state
p to q compatible to G. Then for every u, v ∈ Nd, p(u) Λ−→ q(v) if and only if there exists
e ∈ Nk such that (u, e, v) |= ELPS(Λ). Moreover, for every u, v ∈ Nd and every e ∈ Nk such

that (u, e, v) |= ELPS(Λ), we have p(u)
α0β

e(1)
1 α1...β

e(k)
k

αk−−−−−−−−−−−−−→ q(v).

We also need to introduce the homogeneous version of ELPS(Λ) for technical reasons.

▶ Definition 4.3. The homogeneous characteristic system E0
LPS(Λ) of Λ is the system of

linear inequalities such that a triple h0 = (u0, e0, v0) ∈ Nd × Nk × Nd satisfies E0
LPS(Λ),

written h0 |= E0
LPS(Λ), if and only if the following conditions hold:

1. for every i = 0, . . . , k, u0 + ∆(β1) · e0(1) + · · · + ∆(βi) · e0(i) ≥ 0;
2. u0 + ∆(β1) · e0(1) + · · · + ∆(βk) · e0(k) = v0.

5 The Modified KLMST Decomposition Algorithm

In this section we apply our results of Section 3 to improve the notoriously hard KLMST
decomposition algorithm for VASS reachability. Our narration will base on the work of
Leroux and Schmitz [15]. For readers familiar with [15], the major modifications are listed
below:

ICALP 2024

136:8 Improved Algorithm for Reachability in d-VASS

The decomposition structure is now a sequence of generalized VASS reachability instances
linked by (positive) linear path schemes rather than by single transitions.
We introduce a new “cleaning” step that replaces all VASS instances which are geometri-
cally 2-dimensional by polynomial-length linear path schemes compatible to them.
We do not guarantee the exact preservation of action languages at each decomposition
step. Instead, we only preserve a subset of action languages. This is a compromise since
linear path schemes capture only the reachability relation but not every possible run.
Nonetheless, it is enough for the reachability problem.

In this section we focus on the effectiveness and correctness of the modified KLMST
decomposition algorithm. Its complexity will be analyzed in Section 6.

5.1 Linear KLM Sequences
The underlying decomposition structure in the KLMST algorithm was known as KLM
sequences, named after Mayr[17], Kosaraju[10], and Lambert[11].

▶ Definition 5.1. A KLM tuple of dimension d is a tuple ⟨p(x)Gq(y)⟩ where G = (Q, T)
is a d-VASS and p(x), q(y) ∈ Q × Nd

ω are two (generalized) configurations of G. A KLM
sequence of dimension d is a sequence of KLM tuples interleaved by transitions of the form

ξ = ⟨p0(x0)G0q0(y0)⟩ t1 ⟨p1(x1)G1q1(y1)⟩ t2 . . . tk ⟨pk(xk)Gkqk(yk)⟩ , (11)

where each tuple ⟨pi(xi)Giqi(yi)⟩ is a KLM tuple of dimension d and each ti is a transition
of the form (qi−1, ai, pi) from state qi−1 to pi with effect ai ∈ Zd.

In this paper we generalize the definition of KLM sequences to allow (positive) linear
path schemes to connect KLM tuples.

▶ Definition 5.2. A linear KLM sequence of dimension d is a sequence

ξ = ⟨p0(x0)G0q0(y0)⟩ Λ1 ⟨p1(x1)G1q1(y1)⟩ Λ2 . . . Λk ⟨pk(xk)Gkqk(yk)⟩ , (12)

where each tuple ⟨pi(xi)Giqi(yi)⟩ is a KLM tuple of dimension d and each Λi is a positive
linear path scheme from state qi−1 to pi.

One immediately sees that KLM sequences are just special cases of linear KLM sequences.
Let ξ be a linear KLM sequence given as (12), we write ξi := ⟨pi(xi)Giqi(yi)⟩ for the ith
KLM tuple occurring in ξ.

Action languages

Let ξ be a linear KLM sequence given as (12). We say a path π from state p0 to qk is
admitted by ξ, written ξ ⊢ π, if π can be written as π = π0ρ1π1 . . . ρkπk where πi is a path
from pi to qi in Gi for each i = 0, . . . , k, and ρi is a path admitted by Λi for each i = 1, . . . , k,
such that there exist vectors m0, n0, . . . , mk, nk ∈ Nd such that

p0(m0) π0−→ q0(n0) ρ1−→ p1(m1) π1−→ q1(n1) ρ2−→ · · · ρk−→ pk(mk) πk−→ qk(nk) (13)

and that mi ⊑ xi, ni ⊑ yi for each i = 0, . . . , k.
The action language Lξ of ξ is the language over Zd defined by Lξ :=

{
JπK : ξ ⊢ π

}
,

where we recall that J·K is the word morphism mapping each transition to its effect.
We are more interested in the action languages because in some decomposition steps we

have to modify the set of transitions, and only the action word of admitted runs can be
preserved. Notice that action languages preserve not only the effects of admitted runs, but
also their lengths.

Y. Fu, Q. Yang, and Y. Zheng 136:9

Ranks and Sizes

Let t be a transition in a d-VASS G, we define Cyc(G/t) to be the vector space spanned
by the effects of all cycles in G containing t. For the VASS G, let ri be the number of
transitions t in G such that dim(Cyc(G/t)) = i for each i = 0, . . . , d. Then the rank
of G is defined as rank(G) = (rd, . . . , r3) ∈ Nd−2. We also define the full rank of G as
rankfull(G) = (rd, . . . , r0) ∈ Nd+1.

The following lemma was proved in [15], which shows that in a strongly connected VASS
G, the space Cyc(G/t) corresponds to Cyc(G).

▶ Lemma 5.3 ([15, Lem. 3.2]). Let t be a transition of a strongly connected VASS G. Then
Cyc(G/t) = Cyc(G).

The following corollary is immediate.

▶ Corollary 5.4. Let G be a strongly connected d-VASS. Then rank(G) = 0 if and only if G

is geometrically 2-dimensional.

Let ξ be a linear KLM sequence given as (12). We define the rank of ξ as rank(ξ) =∑k
i=0 rank(Gi), and the full rank of ξ as rankfull(ξ) =

∑k
i=0 rankfull(Gi). We remark that

the full rank corresponds to the rank defined in [15]. Ranks are ordered lexicographically:
let r = (rd, . . . , r0) and r′ = (r′

d, . . . , r′
0), we write r ≤lex r′ if r = r′ or the maximal i with

ri ̸= r′
i satisfies ri < r′

i.
Recall that for a VASS G we write |G| for its size as defined in (1). For a linear path

scheme Λ, its length |Λ| and norm ∥Λ∥ are defined in Section 3.1. Let ζ = ⟨p(x)Gq(y)⟩ be a
KLM tuple of dimension d, its size is defined to be |ζ| = |G| + d · (∥x∥ + ∥y∥ + 1). Let ξ be
a linear KLM sequence given as (12), we define its size as

|ξ| =
k∑

i=0
|ξi| +

k∑
i=1

d · |Λi| · (∥Λi∥ + 1). (14)

Note that the sizes defined in this paper reflect the sizes of unary encoding, thus have an
exponential expansion in their binary encoding.

5.2 Characteristic Systems for Linear KLM Sequences
We define in this section the characteristic systems of linear KLM sequences, which are
systems of linear inequalities that serve as an under-specification of admitted runs. Let
G = (Q, T) be a VASS, we first recall the Kirchhoff system KG,p,q of G with respect to states
p, q ∈ Q, which is a system of linear equations such that a function ϕ ∈ NT is a model of
KG,p,q, written ϕ |= KG,p,q, if and only if

1q − 1p =
∑

t=(r,a,s)∈T

ϕ(t) · (1s − 1r), (15)

where 1p ∈ {0, 1}Q is the indicator function defined by 1p(q) = 1 if q = p and 1p(q) = 0
otherwise. We also need the homogeneous version of KG,p,q, denoted by K0

G,p,q, where a
function ϕ ∈ NT is a model of it, written ϕ |= K0

G,p,q, if and only if

0 =
∑

t=(r,a,s)∈T

ϕ(t) · (1s − 1r). (16)

ICALP 2024

136:10 Improved Algorithm for Reachability in d-VASS

▶ Definition 5.5. Let ξ be a linear KLM sequence given by

ξ = ⟨p0(x0)G0q0(y0)⟩ Λ1 ⟨p1(x1)G1q1(y1)⟩ Λ2 . . . Λk ⟨pk(xk)Gkqk(yk)⟩ (17)

The characteristic system E(ξ) is a set of linear (in)equalities such that a sequence

h = (m0, ϕ0, n0), e1, (m1, ϕ1, n1), e2, . . . , ek, (mk, ϕk, nk), (18)

where each (mi, ϕi, ni) ∈ Nd × NTi × Nd and each ei ∈ N|Λi|∗ , is a model of E(ξ), written
h |= E(ξ), if and only if
1. mi ⊑ xi, ϕi |= KG,p,q, ni ⊑ yi and ni = mi + ∆(ϕi) for every i = 0, . . . , k;
2. (ni−1, ei, mi) |= ELPS(Λi) for every i = 1, . . . , k.

Similarly, the homogeneous characteristic system E0(ξ) is a set of linear (in)equalities
such that a sequence h of the form (18) is a model of E0(ξ), written h |= E0(ξ), if and only if
1. mi(j) = 0 whenever xi(j) ̸= ω, ϕi |= K0

G,p,q, ni(j) = 0 whenever yi(j) ̸= ω, and
ni = mi + ∆(ϕi) for every i = 0, . . . , k;

2. (ni−1, ei, mi) |= E0
LPS(Λi) for every i = 1, . . . , k.

The sequence ξ is said to be satisfiable if E(ξ) has a model, otherwise it’s unsatisfiable.

Let h be a model of E(ξ) (or E0(ξ)), we shall write mh
i , ϕh

i , nh
i , eh

i for the values of
mi, ϕi, ni, ei assigned by h, respectively. Recall that unsatisfiable linear KLM sequences
have empty action languages.

▶ Lemma 5.6 (cf. [15, Lem. 3.5]). For any unsatisfiable linear KLM sequence ξ, Lξ = ∅.

5.2.1 Bounds on Bounded Values in E(ξ)

We state here a lemma similar to [15, Lem. 3.7], which upper bounds the bounded values in the
characteristic system E(ξ). Its proof can be found in the appendix, which is a straightforward
application of tools in [3] and [18].

▶ Lemma 5.7. Assume that ξ = ⟨p0(x0)G0q0(y0)⟩ Λ1 · · · Λk ⟨pk(xk)Gkqk(yk)⟩ is satisfiable.
Then for every 0 ≤ i ≤ k we have:

For every 1 ≤ j ≤ d, the set of values mh
i (j) where h |= E(ξ) is unbounded if, and only

if, there exists a model h0 of E0(ξ) such that mh0
i (j) > 0.

For every t ∈ Ti, the set of values ϕh
i (t) where h |= E(ξ) is unbounded if, and only if,

there exists a model h0 of E0(ξ) such that ϕh
i (t) > 0.

For every 1 ≤ j ≤ d, the set of values nh
i (j) where h |= E(ξ) is unbounded if, and only if,

there exists a model h0 of E0(ξ) such that nh0
i (j) > 0.

Moreover, every bounded value of E(ξ) is bounded by (10|ξ|)12|ξ|.

5.3 Cleaning of Linear KLM Sequences
In this section we define three conditions that require a linear KLM sequence to be strongly
connected, pure, and saturated. Together with the satisfiability condition, they make up the
so-called “clean” condition of linear KLM sequences. Note that the purity condition is new
compared to [15], which requires every geometrically 2-dimensional VASSes occur in a linear
KLM sequence to be replaced by linear path schemes.

Y. Fu, Q. Yang, and Y. Zheng 136:11

Strongly Connected Sequences

A linear KLM sequence ξ = ⟨p0(x0)G0q0(y0)⟩ Λ1 · · · Λk ⟨pk(xk)Gkqk(yk)⟩ is strongly con-
nected if all the VASSes G0, . . . , Gk are strongly connected (as they are understood as directed
graphs). One can easily obtain strongly connected sequences by expanding the strongly
connected components of each VASS:

▶ Lemma 5.8 ([15, Lem. 4.2]). For any linear KLM sequence ξ which is not strongly
connected, one can compute in time exp(|ξ|) a finite set Ξ of strongly connected linear KLM
sequences such that Lξ =

⋃
ξ′∈Ξ Lξ′ and that rank(ξ′) ≤lex rank(ξ) and |ξ′| ≤ (2d + 1)|ξ| for

every ξ′ ∈ Ξ.

Pure Sequences

A KLM tuple ⟨p(x)Gq(y)⟩ is called trivial if p(x) = q(y) and G contains no transition and
only a single state p. In this case we simply write ⟨p(x)⟩ for this tuple. Note that the action
language of a trivial tuple contains exactly the empty word.

A linear KLM sequence ξ = ⟨p0(x0)G0q0(y0)⟩ Λ1 · · · Λk ⟨pk(xk)Gkqk(yk)⟩ is said to be
pure if ξ is strongly connected and for every i = 0, . . . , k, rank(Gi) = 0 implies that the
tuple ⟨pi(xi)Giqi(yi)⟩ is trivial. By Corollary 5.4, a rank-0 strongly connected VASS is
geometrically 2-dimensional, and thus can be replaced by linear path schemes in case it is
not trivial.

▶ Lemma 5.9. Let ξ be a strongly connected linear KLM sequence. Whether ξ is pure is in
PSPACE. If ξ is not pure, one can compute in space poly(|ξ|) a finite set Ξ of pure linear
KLM sequences such that

⋃
ξ′∈Ξ Lξ′ ⊆ Lξ and

⋃
ξ′∈Ξ Lξ′ ̸= ∅ whenever Lξ ̸= ∅, and such that

rank(ξ′) = rank(ξ) and |ξ′| ≤ |ξ|O(1) for all ξ′ ∈ Ξ.

Saturated Sequences

Let ξ = ⟨p0(x0)G0q0(y0)⟩ Λ1 · · · Λk ⟨pk(xk)Gkqk(yk)⟩ be a linear KLM sequence. We say ξ

is saturated if for every 0 ≤ i ≤ k and every j ∈ [d], we have
xi(j) = ω implies the set of values mh

i (j) where h |= E(ξ) is unbounded; and
yi(j) = ω implies the set of values nh

i (j) where h |= E(ξ) is unbounded.

▶ Lemma 5.10 ([15, Lem. 4.4]). From any pure linear KLM sequence ξ, one can compute
in time exp(|ξ|O(|ξ|)) a finite set Ξ of saturated pure linear KLM sequences such that Lξ =⋃

ξ′∈Ξ Lξ′ , and such that rank(ξ′) = rank(ξ) and |ξ′| ≤ |ξ|O(|ξ|) for every ξ′ ∈ Ξ.

Proof. By Lemma 5.7, if a variable mi(j) or ni(j) is bounded in E(ξ), we can replace the
corresponding ω component in ξ by all possible values bounded by (10|ξ|)12|ξ| ≤ |ξ|O(|ξ|). ◀

The Cleaning Lemma

A linear KLM sequence ξ is called clean if it is satisfiable, strongly connected, pure and
saturated. The lemmas 5.8 through 5.10 show how to make a linear KLM sequence clean.

▶ Lemma 5.11. From any linear KLM sequence ξ, one can compute in time exp(g(|ξ|))
a finite set clean(ξ) of clean linear KLM sequences such that

⋃
ξ′∈clean(ξ) Lξ′ ⊆ Lξ and⋃

ξ′∈clean(ξ) Lξ′ ≠ ∅ whenever Lξ ̸= ∅. Moreover, for every ξ′ ∈ clean(ξ) we have rank(ξ′) ≤lex

rank(ξ) and |ξ′| ≤ g(|ξ|) where g(x) = xxO(1) .

ICALP 2024

136:12 Improved Algorithm for Reachability in d-VASS

5.4 Decomposition of Linear KLM Sequences
In this section we recall three conditions that require a linear KLM sequence to be unbounded,
rigid, and pumpable. If any one of them is violated, a decomposition into a set of linear KLM
sequences with strictly smaller ranks can be performed. Essentially there is nothing new in
this section compared to [15]. The decomposition operations in [15] can be directly applied
here, since they operate on a single KLM tuple and produce KLM sequences that are just
special cases of linear KLM sequences. The proofs in [15] can also be adapted easily, and we
will omit the details here. Especially, the next lemma shows that the arguments of strict
decrease in ranks are still valid even though we discard the lower three components of ranks.

▶ Lemma 5.12. Let ξ′ be a pure linear KLM sequence. For any linear KLM sequence ξ′

with rankfull(ξ′) <lex rankfull(ξ), we have rank(ξ′) <lex rank(ξ).

Unbounded Sequences

Let ξ = ⟨p0(x0)G0q0(y0)⟩ Λ1 · · · Λk ⟨pk(xk)Gkqk(yk)⟩ be a linear KLM sequence. We say ξ is
unbounded if for all i = 0, . . . , k and every transition t ∈ Ti where Ti is the set of transitions
of Gi, the set of values ϕh

i (t) where h |= E(ξ) is unbounded. Bounded transitions can be
expanded exhaustively according to the bounds given by Lemma 5.7.

▶ Lemma 5.13 ([15, Lem. 4.6]). Whether a linear KLM sequence ξ is unbounded is decidable
in NP. Moreover, if ξ is pure and bounded, one can compute in time exp(|ξ|O(|ξ|)) a finite
set Ξ of linear KLM sequences such that Lξ =

⋃
ξ′∈Ξ Lξ′ and such that rank(ξ′) <lex rank(ξ)

and |ξ′| < |ξ|O(|ξ|) for every ξ′ ∈ Ξ.

Rigid Sequences

A coordinate j ∈ [d] is said to be fixed by a VASS G = (Q, T) if there exists a function
fj : Q → N such that fj(q) = fj(p) + a(j) for every transition (p, a, q) ∈ T . We also say that
fj fixes G at coordinate j in this case.

A KLM tuple ⟨p(x)Gq(y)⟩ is said to be rigid if for every coordinate j fixed by G = (Q, T),
there exists a function gj : Q → N that fixes G at coordinate j and such that gj(p) ⊑ x(j)
and gj(q) ⊑ y(j).

A linear KLM sequence ξ = ⟨p0(x0)G0q0(y0)⟩ Λ1 · · · Λk ⟨pk(xk)Gkqk(yk)⟩ is said to be
rigid if every tuple ⟨pi(xi)Giqi(yi)⟩ in ξ is rigid.

▶ Lemma 5.14 ([15, Lem. 4.9]). From any pure linear KLM sequence ξ one can decide in
polynomial time whether ξ is not rigid. Moreover, in that case one can compute in polynomial
time a linear KLM sequence ξ′ such that Lξ = Lξ′ , rank(ξ′) <lex rank(ξ), and |ξ′| ≤ |ξ|.

Pumpable Sequences

Given a KLM tuple ⟨p(x)Gq(y)⟩, recall the forward and backward acceleration vectors
FaccG,p(x), BaccG,q(y) ∈ Nd

ω defined by

FaccG,p(x)(j) =
{

ω if p(x) ∗−→ p(x′) for some x′ with x′ ≥ x, x′(j) > x(j)
x(j) otherwise

(19)

BaccG,q(y)(j) =
{

ω if q(y′) ∗−→ q(y) for some y′ with y′ ≥ y, y′(j) > y(j)
y(j) otherwise

(20)

Y. Fu, Q. Yang, and Y. Zheng 136:13

A tuple ⟨p(x)Gq(y)⟩ is said to be pumpable if FaccG,p(x)(j) = BaccG,q(y)(j) = ω for
every coordinate j not fixed by G.

A linear KLM sequence given by ξ = ⟨p0(x0)G0q0(y0)⟩ Λ1 · · · Λk ⟨pk(xk)Gkqk(yk)⟩ is said
to be pumpable if every tuple ⟨pi(xi)Giqi(yi)⟩ in ξ is pumpable.

▶ Lemma 5.15 ([15, Lem. 4.15]). Whether a linear KLM sequence ξ is pumpable is decidable
in EXPSPACE. Moreover, if ξ is pure and unpumpable, one can compute in time exp(|ξ|O(1))
a finite set Ξ of linear KLM sequences such that Lξ =

⋃
ξ′∈Ξ Lξ′ and such that rank(ξ′) <lex

rank(ξ) and |ξ′| < |ξ|O(1) for every ξ′ ∈ Ξ.

Note that the O(1) term here hides a constant depending on d, which essentially arises
from a result on the coverability problem by Rackoff [19]. The O(1) term also captures the
difference between the sizes of linear KLM sequences defined here and that in [15].

The Decomposition Lemma

A linear KLM sequence is normal if it is clean, unbounded, rigid, and pumpable. The lemmas
5.13 through 5.15 show that when a clean linear KLM sequence is not normal, we are able to
decompose it into a finite set of linear KLM sequences of strictly smaller ranks.

▶ Lemma 5.16. From any clean linear KLM sequences ξ that is not normal, one can compute
in time exp(h(ξ)) a finite set dec(ξ) of clean linear KLM sequence such that

⋃
ξ′∈dec(ξ) Lξ′ ⊆

Lξ and
⋃

ξ′∈dec(ξ) Lξ′ ≠ ∅ whenever Lξ ̸= ∅. Moreover, for every ξ′ ∈ dec(ξ) we have

rank(ξ′) <lex rank(ξ) and |ξ′| ≤ h(ξ) where h(x) = xxxO(1)

.

5.5 Normal Sequences
The following lemma shows that a normal linear KLM sequence is guaranteed to have
non-empty action language, thus one can terminate the decomposition process once a normal
sequence is produced.

▶ Lemma 5.17. Let ξ be a normal linear KLM sequence, then there is a word σ ∈ Lξ whose
length is bounded by |σ| ≤ ℓ(|ξ|) where ℓ(x) ≤ xO(x).

5.6 Putting All Together: The Modified KLMST Algorithm
Here we describe the modified KLMST decomposition algorithm for VASS reachability
problem. Suppose we are given a d-VASS G = (Q, T) and two configurations p(m), q(n) ∈
Q × Nd. To decide whether p(m) ∗−→ q(n) holds in G, it is enough to decide whether Lξ is
non-empty where ξ = ⟨p(m)Gq(n)⟩. To start with, we use Lemma 5.11 to clean the sequence
ξ, and then choose ξ0 ∈ clean(ξ) non-deterministically. If ξ0 is normal then we are done
by Lemma 5.17. Otherwise, we decompose ξ0 using Lemma 5.16 and choose ξ1 ∈ dec(ξ0)
non-deterministically. The procedure continues to produce a series of linear KLM sequences
ξ0, ξ1, ξ2, . . . where ξi+1 ∈ dec(ξi), until either we finally obtain a normal sequence ξn, or at
some point we have to abort because the decomposition of a linear KLM sequence is the
empty set. The procedure terminates because rank(ξ0) >lex rank(ξ1) >lex rank(ξ2) >lex · · ·
form a decreasing chain of the well-order (Nd−2, <lex), which must be finite. If Lξ = ∅ then
we cannot get a normal sequence since the action languages Lξ ⊇ Lξ0 ⊇ Lξ1 ⊇ · · · are all
empty. On the other hand, if Lξ ̸= ∅ then there are non-deterministic choices that always
choose the linear KLM sequences with non-empty action languages, which finally lead to a
normal sequence. This shows the correctness of the algorithm.

ICALP 2024

136:14 Improved Algorithm for Reachability in d-VASS

6 Complexity Upper Bound

The termination of the modified KLMST decomposition algorithm is guaranteed by a ranking
function that decreases along a well-ordering. In order to analyze the length of this decreasing
chain, we recall the so-called “length function theorems” by Schmitz [20] in Section 6.1.
After that, we can locate the complexity upper bound of the algorithm in the fast-growing
complexity hierarchy [21] which we recall in Section 6.2. Readers familiar with [15] may
realize that the complexity upper bound for d-VASS can be improved to Fd+1, i.e. the
(d+1)-th level in the fast-growing hierarchy, with our ranking function. In fact, by a careful
analysis on a property of fast-growing functions, we further improve this bound to Fd.

In this section we assume some familiarity with ordinal numbers (see, e.g. [9]). We write
ω here for the first infinite ordinal, not to be confused with the infinite element in previous
sections.

6.1 Length of Sequences of Decreasing Ranks
Let ξ be a linear KLM sequence of dimension d with rank(ξ) = (rd, . . . , r3), we define the
ordinal rank αξ of ξ as the ordinal number given by

αξ := ωd−3 · rd + ωd−4 · rd−1 + · · · + ω0 · r3. (21)

Note that rank(ξ) <lex rank(ξ′) if and only if αξ < αξ′ . With this reformulation, we now
focus on the decreasing chain of ordinal ranks.

Let α < ωω be an ordinal given in Cantor Normal Form as α = ωn ·cn + · · ·+ω0 ·c0 where
n, c0, . . . , cn ∈ N, we define the size of α as Nα := max{n, max0≤i≤n ci}. For the linear
KLM sequence ξ with rank(ξ) = (rd, . . . , r3), we have Nαξ = max{d − 3, max3≤i≤d ri} ≤ |ξ|.

Given a number n0 ∈ N and a function h : N → N that is monotone inflationary (that
is, x ≤ h(x) and h(x) ≤ h(y) whenever x ≤ y), we say a sequence of ordinals α0, α1, . . . is
(n0, h)-controlled if Nαi ≤ hi(n0) for all i ∈ N, where hi(n0) is the ith iteration of h on n0.

Let ξ0, ξ1, . . . be the linear KLM sequences produced in the modified KLMST algorithm,
by Lemma 5.16 we know that the sequence of ordinal ranks

αξ0 > αξ1 > · · · (22)

is (|ξ0|, h)-controlled where h is defined in Lemma 5.16. Recall that ξ0 ∈ clean(ξ) where
ξ = ⟨p(m)Gq(n)⟩ corresponds to the input reachability instance. Then |ξ0| ≤ g(|ξ|) where g

is defined in Lemma 5.11, and (22) is indeed (g(n), h)-controlled where n := | ⟨p(m)Gq(n)⟩ |.

Length function theorem

The length of the controlled sequence of ordinals (22) can be bounded in terms of the
hierarchies of fast-growing functions of Hardy and Cichoń [4]. First recall that given a limit
ordinal λ ≤ ωω, the standard fundamental sequence of λ is a sequence (λ(x))x<ω defined
inductively by

ωω(x) := ωx+1, (β + ωk+1)(x) := β + ωk · (x + 1) (23)

where β +ωk+1 is in Cantor Normal Form. Now given a function h : N → N that is monotone
inflationary, we define the Hardy hierarchy (hα)α≤ωω and the Cichoń hierarchy (hα)α≤ωω as
two families of functions hα, hα : N → N indexed by ordinals α ≤ ωω given inductively by

h0(x) := x, hα+1(x) := hα(h(x)), hλ(x) := hλ(x)(x), (24)
h0(x) := 0, hα+1(x) := 1 + hα(h(x)), hλ(x) := hλ(x)(x). (25)

Y. Fu, Q. Yang, and Y. Zheng 136:15

Observe that Cichoń hierarchy counts the number of iterations of h in Hardy hierarchy, that
is, hhα(x)(x) = hα(x). Also note that as h is monotone inflationary, by induction on α we
have hα(x) ≤ hα(x). Now we give the length function theorem as follows.

▶ Theorem 6.1 (Length function theorem, [20, Thm. 3.3]). Let n0 ≥ d − 2, then the maximal
length of (n0, h)-controlled decreasing sequences of ordinals in ωd−2 is hωd−2(n0).

Small witness property

By Theorem 6.1 we can bound the length of (22), which then yields a bound on the minimal
length of runs witnessing reachability.

▶ Lemma 6.2 (Small witnesses). Let G = (Q, T) be a d-VASS where d ≥ 3, let p(m), q(n) ∈
Q × Nd be two configurations, and let n := | ⟨p(m)Gq(n)⟩ |. If p(m) ∗−→ q(n) holds in G,
then there is a path σ such that p(m) σ−→ q(n) and |σ| ≤ ℓ(hωd−2(g(n))), where g, h, ℓ are
defined in lemmas 5.11, 5.16, and 5.17.

Proof. Suppose p(m) ∗−→ q(n), then there is a sequence of linear KLM sequence ξ0, ξ1, . . . , ξL

produced in the modified KLMST algorithm, such that ξL is normal. We have discussed
that the sequence of their ordinal ranks αξ0 > αξ1 > · · · > αξL is (g(n), h)-controlled, so by
Theorem 6.1 we have L ≤ hωd−2(g(n)). From Lemma 5.16 and the fact that hhα(x) = hα(x),
the size of ξL is bounded by

|ξL| ≤ hL(|ξ0|) ≤ hh
ωd−2 (g(n))(g(n)) = hωd−2

(g(n)). (26)

Now Lemma 5.17 bounds the length of the minimal witnesses by ℓ(hωd−2(g(n))). ◀

6.2 Fast-Growing Complexity Hierarchy
We recall the fast-growing hierarchy formally introduced by Schmitz [21] that captures the
complexity class high above elementary. Define H(x) := x + 1, we shall use the Hardy
hierarchy (Hα)α<ωω , where for example Hω2(x) = 2x+1(x + 1) and Hω3(x) grows faster
than the tower function. First we define the family Fα :=

⋃
β<ωα FDTIME(Hβ(n)) which

contains functions computable in deterministic time O(Hβ(n)). Observe that, for example,
F3 contains exactly the Kalmar elementary functions. Now we define

Fα :=
⋃

p∈Fα

DTIME(Hωα

(p(n))) (27)

which is the class of decision problems solvable in deterministic time O(Hωα(p(n))). Note
that non-deterministic time Turing machines can be made deterministic with an exponential
overhead in F3, thus for α ≥ 3, we have equivalently that Fα =

⋃
p∈Fα

NDTIME(Hωα(p(n))).
Observe that Fα is closed under reductions in Fα.

6.2.1 Relativized Fast-Growing Functions
In order to express the complexity of the modified KLMST algorithm in terms of the hierarchy
(Fα)α<ω, one needs to locate the function hωd−2 in the Hardy hierarchy (Hα)α<ωω where
h ∈ F3 is the elementary function from Lemma 5.16. Previously we can upper bound hωd−2

by Hωd+1 with the help of [21, Lem. 4.2]. Here we show a slightly better result, from which
we can bound hωd−2(x) by Hωd(O(x)).

▶ Lemma 6.3 (cf. [21, Lem. A.5]). Let h : N → N be a monotone inflationary function,
let a, b, c ≥ 1 and x0 ≥ 0 be natural numbers. If for all x ≥ x0, h(x) ≤ Hωb·c(x), then
hωa(x) ≤ Hωb+a((c + 1)x) for all x ≥ max{2c, x0}.

ICALP 2024

136:16 Improved Algorithm for Reachability in d-VASS

6.3 Upper Bounds for VASS Reachability
Now we analyze the time complexity of the modified KLMST algorithm. Given as input the
d-VASS G = (Q, T) and two configurations p(m), q(n), let ξ := ⟨p(m)Gq(n)⟩ and n := |ξ|.
The initial sequence ξ0 ∈ clean(ξ) can be computed in (non-deterministic) time elementary in
n by Lemma 5.11. Then the algorithm produces ξ0, ξ1, . . . , ξL with L ≤ hωd−2(g(n)), where
g, h are defined in lemmas 5.11, 5.16. Note that in each step, the sequence ξi+1 ∈ dec(ξi) can
be computed in time elementary in |ξi| by Lemma 5.16, and the sizes |ξi| are all bounded by
hωd−2(g(n)) as we have discussed above in the proof of Lemma 6.2. To sum up, the entire
algorithm finishes in non-deterministic time elementary in hωd−2(g(n)).

▶ Lemma 6.4. On input a d-VASS G = (Q, T) where d ≥ 3 and p(m), q(n) ∈ Q × Nd,
the modified KLMST algorithm finishes in non-deterministic time e(hωd−2(g(n))) where
n = |⟨p(m)Gq(n)⟩|, g, h are defined in lemmas 5.11, 5.16, and e ∈ F3 is some fixed function.

Since h is an elementary function, there is a number c ∈ N such that h is eventually
dominated by Hω2·c. By Lemma 6.3 we can upper bound hωd−2(x) by Hωd((c+1)x). Observe
that the inner part g(n) is elementary in the binary encoding size of the input G, p(m), q(n),
thus can be captured by a function p ∈ F3. Finally, [21, Lem. 4.6] allows us to move the
outermost function e to the innermost position. Hence we have the following upper bound.

▶ Theorem 6.5. Reachability in d-dimensional VASS is in Fd for all d ≥ 3.

Also, by Lemma 6.2 there is a simple combinatorial algorithm for d-VASS reachability.
We fist compute the bound B := ℓ(hωd−2(g(n))), which can be done in time elementary in B

by [21, Thm. 5.1]. Then we can decide reachability by just enumerate all possible paths in G

with length bounded by B.

7 Conclusion

We have shown that the reachability problem in d-dimensional vector addition system with
states is in Fd, improving the previous Fd+4 upper bound by Leroux and Schmitz [15]. By
capturing reachability in geometrically 2-dimensional VASSes with linear path schemes, we are
able to reduce significantly the number of decomposition steps in the KLMST decomposition
algorithm. Combined with a careful analysis on fast-growing functions, we finally obtained
the Fd upper bound. It should be noticed though, that our algorithm avoids computing the
“full decomposition” [14] of KLM sequences, thus cannot improve the complexity of problems
that essentially rely on the full decomposition, e.g., the VASS downward language inclusion
problem [8, 23, 15].

It has been shown that the reachability problem in (2d+3)-VASS is Fd-hard [5]. In the
case of 3-VASS, it is known that the reachability problem is PSPACE-hard. The gap between
the lower bound and the upper bound F3 = TOWER [22] is huge. It is very unlikely that the
problem is PSPACE-complete. Effort to uplift the lower bound is called for.

References
1 Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase, Ranko Lazic,

Pierre McKenzie, and Patrick Totzke. The reachability problem for two-dimensional vector
addition systems with states. J. ACM, 68(5):34:1–34:43, 2021. doi:10.1145/3464794.

2 Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie. Reach-
ability in two-dimensional vector addition systems with states is pspace-complete. In 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 32–43. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.14.

https://doi.org/10.1145/3464794
https://doi.org/10.1109/LICS.2015.14

Y. Fu, Q. Yang, and Y. Zheng 136:17

3 Dmitry Chistikov and Christoph Haase. The taming of the semi-linear set. In Ioannis
Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd
International Colloquium on Automata, Languages, and Programming, ICALP 2016, July
11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 128:1–128:13. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2016. doi:10.4230/LIPICS.ICALP.2016.128.

4 E. A. Cichon and Elias Tahhan-Bittar. Ordinal recursive bounds for higman’s theorem. Theor.
Comput. Sci., 201(1-2):63–84, 1998. doi:10.1016/S0304-3975(97)00009-1.

5 Wojciech Czerwinski, Ismaël Jecker, Slawomir Lasota, Jérôme Leroux, and Lukasz Orlikowski.
New lower bounds for reachability in vector addition systems. In Patricia Bouyer and Srikanth
Srinivasan, editors, 43rd IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2023, December 18-20, 2023, IIIT Hyderabad,
Telangana, India, volume 284 of LIPIcs, pages 35:1–35:22. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPICS.FSTTCS.2023.35.

6 Wojciech Czerwinski and Lukasz Orlikowski. Reachability in vector addition systems is
ackermann-complete. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1229–1240. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00120.

7 Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reachability in
succinct and parametric one-counter automata. In Mario Bravetti and Gianluigi Zavattaro,
editors, CONCUR 2009 - Concurrency Theory, 20th International Conference, CONCUR
2009, Bologna, Italy, September 1-4, 2009. Proceedings, volume 5710 of Lecture Notes in
Computer Science, pages 369–383. Springer, 2009. doi:10.1007/978-3-642-04081-8_25.

8 Peter Habermehl, Roland Meyer, and Harro Wimmel. The downward-closure of petri
net languages. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer
auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, 37th
International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings,
Part II, volume 6199 of Lecture Notes in Computer Science, pages 466–477. Springer, 2010.
doi:10.1007/978-3-642-14162-1_39.

9 Thomas Jech. Set Theory. Springer Monographs in Mathematics. Springer, 2003. doi:
10.1007/3-540-44761-X.

10 S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary version).
In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC
’82, pages 267–281, New York, NY, USA, 1982. Association for Computing Machinery. doi:
10.1145/800070.802201.

11 Jean-Luc Lambert. A structure to decide reachability in petri nets. Theor. Comput. Sci.,
99(1):79–104, 1992. doi:10.1016/0304-3975(92)90173-D.

12 Jérôme Leroux. Flat petri nets (invited talk). In Didier Buchs and Josep Carmona, editors,
Application and Theory of Petri Nets and Concurrency - 42nd International Conference,
PETRI NETS 2021, Virtual Event, June 23-25, 2021, Proceedings, volume 12734 of Lecture
Notes in Computer Science, pages 17–30. Springer, 2021. doi:10.1007/978-3-030-76983-3_2.

13 Jérôme Leroux. The reachability problem for petri nets is not primitive recursive. In 62nd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1241–1252. IEEE, 2021. doi:10.1109/FOCS52979.2021.00121.

14 Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector addition systems. In
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan,
July 6-10, 2015, pages 56–67. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.16.

15 Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-
recursive in fixed dimension. In 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019.
doi:10.1109/LICS.2019.8785796.

ICALP 2024

https://doi.org/10.4230/LIPICS.ICALP.2016.128
https://doi.org/10.1016/S0304-3975(97)00009-1
https://doi.org/10.4230/LIPICS.FSTTCS.2023.35
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.1007/978-3-642-14162-1_39
https://doi.org/10.1007/3-540-44761-X
https://doi.org/10.1007/3-540-44761-X
https://doi.org/10.1145/800070.802201
https://doi.org/10.1145/800070.802201
https://doi.org/10.1016/0304-3975(92)90173-D
https://doi.org/10.1007/978-3-030-76983-3_2
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1109/LICS.2019.8785796

136:18 Improved Algorithm for Reachability in d-VASS

16 Jérôme Leroux and Grégoire Sutre. On flatness for 2-dimensional vector addition systems
with states. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR 2004 - Concurrency
Theory, 15th International Conference, London, UK, August 31 - September 3, 2004, Pro-
ceedings, volume 3170 of Lecture Notes in Computer Science, pages 402–416. Springer, 2004.
doi:10.1007/978-3-540-28644-8_26.

17 Ernst W. Mayr. An algorithm for the general petri net reachability problem. In Proceedings of
the Thirteenth Annual ACM Symposium on Theory of Computing, STOC ’81, pages 238–246,
New York, NY, USA, 1981. Association for Computing Machinery. doi:10.1145/800076.
802477.

18 Loic Pottier. Minimal solutions of linear diophantine systems: Bounds and algorithms. In
Ronald V. Book, editor, Rewriting Techniques and Applications, 4th International Conference,
RTA-91, Como, Italy, April 10-12, 1991, Proceedings, volume 488 of Lecture Notes in Computer
Science, pages 162–173. Springer, 1991. doi:10.1007/3-540-53904-2_94.

19 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor.
Comput. Sci., 6:223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

20 Sylvain Schmitz. Complexity bounds for ordinal-based termination - (invited talk). In Joël
Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Problems - 8th International
Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings, volume 8762 of Lecture
Notes in Computer Science, pages 1–19. Springer, 2014. doi:10.1007/978-3-319-11439-2_1.

21 Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Trans. Comput. Theory,
8(1):3:1–3:36, 2016. doi:10.1145/2858784.

22 Qizhe Yang and Yuxi Fu. Reachability in 3-vass is in tower. CoRR, abs/2306.05710, 2023.
doi:10.48550/arXiv.2306.05710.

23 Georg Zetzsche. The complexity of downward closure comparisons. In Ioannis Chatzigiannakis,
Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, volume 55 of LIPIcs, pages 123:1–123:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPICS.ICALP.2016.123.

https://doi.org/10.1007/978-3-540-28644-8_26
https://doi.org/10.1145/800076.802477
https://doi.org/10.1145/800076.802477
https://doi.org/10.1007/3-540-53904-2_94
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1007/978-3-319-11439-2_1
https://doi.org/10.1145/2858784
https://doi.org/10.48550/arXiv.2306.05710
https://doi.org/10.4230/LIPICS.ICALP.2016.123

	1 Introduction
	2 Preliminaries
	2.1 Vector Addition Systems with States

	3 Flattability of Geometrically 2-dimensional VASSes
	3.1 Linear Path Schemes
	3.2 Main Results

	4 Characteristic Systems for Linear Path Schemes
	5 The Modified KLMST Decomposition Algorithm
	5.1 Linear KLM Sequences
	5.2 Characteristic Systems for Linear KLM Sequences
	5.2.1 Bounds on Bounded Values in Characteristic System

	5.3 Cleaning of Linear KLM Sequences
	5.4 Decomposition of Linear KLM Sequences
	5.5 Normal Sequences
	5.6 Putting All Together: The Modified KLMST Algorithm

	6 Complexity Upper Bound
	6.1 Length of Sequences of Decreasing Ranks
	6.2 Fast-Growing Complexity Hierarchy
	6.2.1 Relativized Fast-Growing Functions

	6.3 Upper Bounds for VASS Reachability

	7 Conclusion

