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The qCCS model proposed by Feng et al. provides a powerful framework to describe and reason about quantum 
communication systems that could be entangled with the environment. However, they only studied weak 
bisimulation semantics. In this paper we propose a new branching bisimilarity for qCCS and show that it is 
a congruence. The new bisimilarity is based on the concept of 𝜖-tree and preserves the branching structure of 
concurrent processes where both quantum and classical components are allowed. Furthermore, we present a 
polynomial time equivalence checking algorithm for the ground version of our branching bisimilarity.
1. Introduction

Quantum computers have been proven capable of achieving expo-

nential speed-up for certain classical computational problems, which is 
known as quantum supremacy [9]. With rapid development of quan-

tum hardware, such as IBM’s unveiling the 433-qubit Osprey processor 
in 2022 and more recently Google’s 70-qubit Sycamore processor, the 
research of quantum information has garnered increasing interest. How-

ever, the laws of quantum mechanics, such as the no-cloning of quan-

tum information [26], present profound challenges to almost all fields 
of computer science, including quantum programming language, quan-

tum model checking etc. One well-known example is the verification of 
the correctness and safety of quantum communication protocols. The 
classical theories, methods, and technologies are not directly applicable 
to quantum systems.

Fortunately, over the years researchers have proposed many pow-

erful frameworks for describing and verifying properties of classical 
concurrent communication systems. Process algebra has been especially 
successful in building rigorous mathematical languages and techniques 
for formally modeling classical concurrent systems. As a continuing of 
such success, various quantum process algebras have been proposed for 
formal analysis of quantum systems and verification of quantum com-

munication protocols. One of the most fundamental theoretical research 
problems in quantum process algebra is to find a suitable quantum gen-

eralization of the notion of bisimulation in classical process algebra. In 
practical terms, an equally significant question arises concerning the ef-

ficient verification of bisimulation in quantum systems. Generally what 
we would desire is a full-fledged quantum process algebra equipped 
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with proper behavioral equivalence on quantum processes that can be 
verified efficiently. In this paper we propose quantum branching bisimula-

tion for the quantum CCS model, which abstracts from internal activity 
while at the same time preserves the branching structure of quan-

tum processes in a strong sense. Congruence property and equivalence 
checking algorithm for quantum branching bisimulation are also given.

1.1. Related work

In this part we discuss some related work that we view as most rele-

vant to ours, especially from both bisimulation relation and verification 
algorithm aspects. We then give a brief introduction on our new quan-

tum branching bisimulation.

Jorrand and Lalire [16] defined a language QPAlg (Quantum Process 
Algebra) by extending a CCS-like process algebra with several quantum 
primitives in 2004. Later a branching bisimilarity that preserves the 
branching structure of process graphs was defined in [17]. However, 
this bisimilarity is not a congruence as it is not preserved by the paral-

lel composition operator. Additionally, their setting does not consider 
the state change of quantum systems caused by quantum operations. 
Here quantum operations formalize the possible transformations that 
a quantum system may undergo, including unitary transformations and 
quantum measurements [21]. Gay and Nagarajan [12] defined a lan-

guage CQP (Communicating Quantum Processes), which is obtained 
from the 𝜋-calculus [19,20] by adding primitives for unitary transfor-

mations and quantum measurements. They established a type system to 
ensure the legality of ownership of qubits. A full probabilistic branch-

ing bisimulation for CQP was proposed by Davidson [3] and shown 
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to be a congruence. However, neither QPAlg nor CQP can effectively 
describe the entangled communication in quantum systems, where en-

tangled communication refers to the phenomenon that two participant 
quantum systems in a communication process may share a pair of qubits 
in the entangled state.

To overcome this problem, Feng et al. [7] then proposed a lan-

guage named quantum CCS (i.e., qCCS) for quantum concurrent systems. 
The language qCCS is the quantum extension of classical value-passing 
CCS [14,15]. By carefully designing the semantics of quantum-input 
(quantum-output resp.), qCCS provides a general framework to describe 
quantum communication systems which could be entangled with the 
environment. They also studied bisimulation for finite quantum pro-

cesses and proved a limited congruence property for the bisimilarity, in 
which some constraints are put on the participating processes when the 
parallel composition operator is involved. Later in [28] the same au-

thors studied a purely quantum version of qCCS in which no classical 
data is explicitly involved. They established the strong bisimulation se-

mantics for such a model and showed that the induced bisimilarity is 
a congruence with respect to the parallel composition operator. In [8], 
the authors introduce a new notion of weak probabilistic bisimilarity 
for the general qCCS model where both classical and quantum data are 
involved. They also prove that it is preserved by all process operators, 
including parallel composition and recursive definitions. The bisimi-

larity in [8] distinguishes quantum-input from other actions, and to 
match a quantum-input, the application of super-operator on evolving 
processes should be considered. Such requirement is somewhat com-

plicated and unnatural. Then Deng and Feng in [5] proposed an open 
bisimulation for quantum processes, in which the bisimulation condi-

tion and the closure under super-operator application are made to be 
two separated requirements. They further showed that the induced open 
bisimilarity is a congruence relation and has a modal characterization. 
Later in [6], Feng et al. propose the symbolic bisimulation for qCCS and 
show its coincidence with the open bisimulation in [5] when strong 
bisimulation is considered.

Apart from the discussion about proper equivalence relations for 
quantum processes, efficient equivalence checking algorithm is of great 
importance in practice. Given two quantum processes 𝑃 and 𝑆 , equiv-

alence checking decides whether 𝑃 and 𝑆 are related by the selected 
equivalence relation. For quantum models, Qin et al. have investigated 
the equivalence checking problem for the ground (weak) bisimilarity 
[22]. Inspired by [24], they reduce the problem of finding a matching 
weak transition to a linear programming problem that can be solved in 
polynomial time and give a polynomial time algorithm for the equiva-

lence checking problem. In [29], Zhang et al. gives a polynomial time 
equivalence checking algorithm for the branching bisimilarity in RCCS
model by exploiting the classical split-refinement method.

As we have just shown, most of the previous bisimulations proposed 
for qCCS model are either strong (weak resp.) bisimulation or not con-

gruent. They are not exactly what we will need in practice. On the 
one hand, strong bisimulation requires that every internal action must 
be bisimulated for bisimilar processes. Such requirement is usually too 
strict to practical use. On the other hand, weak bisimulation ignores 
all internal actions and only requires that each external actions should 
be matched. It turns out that weak bisimulation does not preserve the 
branching structure of a process, i.e., two weak bisimilar processes may 
go through non-bisimilar intermediate states. Such deficiency can cause 
many problems in practical applications and analysis [13,10]. As an ex-

ample, consider two quantum programs 𝑃1 and 𝑃2 which are supposed 
to implement some quantum protocol specification (formalized as pro-

cess 𝑆). To say that 𝑃𝑖 (𝑖 ∈ {1, 2}) implements 𝑆 correctly, 𝑃𝑖 should 
simulate every state of 𝑆 precisely without introducing any unwanted 
states as by-product. In classical concurrent systems, one such proper 
relation is the famous branching bisimilarity [25]. In [1], Basten then 
proved that the branching bisimilarity is indeed an equivalence. When 
it comes to the probabilistic setting, Castiglioni et al. [2] proposed 
2

a probabilistic branching bisimilarity for divergence-free probabilistic 
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processes and showed that it is an equivalence. Compared with strong 
(weak resp.) bisimulation, branching bisimulation ignores redundant 
simulation of deterministic steps while still preserving the branching 
structure of the considered processes. Thus branching bisimulation is 
often more suitable for being chosen as the criteria for evaluating equiv-

alence between specifications and implementations. Such difference is 
crucial for compositional concurrent processes as the environment can 
interact with intermediate processes freely. It is then natural to study 
quantum branching bisimulation. In our opinion, one possible obstacle 
for the lack of such work in the past could be that most of the previ-

ous quantum bisimulation are based on the conception of probabilistic 
bisimulation proposed by Segala et al. [23], where they use the notion 
of probability distribution on states to characterize probabilistic tran-

sition. This strategy becomes highly involved if one tries to directly 
extend it to branching bisimulation. Recently, a branching bisimilar-

ity equivalence [11] has been defined for randomized process models 
based on the concept of 𝜖-tree and has been shown to be a congruence 
relation, which makes the study of quantum branching bisimulation fea-

sible. In this paper, we extend the general approach to qCCS model in 
combination with the notion of open bisimulation. We propose a novel 
quantum branching bisimulation. Then follow the methodology in [29], 
we also give an efficient equivalence checking algorithm for it.

In short, in this paper we focus on solving two fundamental prob-

lems for quantum system verification. We first establish a new equiva-

lence with good algebraic property, and then give an efficient equiva-

lence checking algorithm for it.

1.2. Contribution

The main contributions of this paper are twofold.

1. We propose a new branching bisimulation for the full qCCS model, 
which is proved to be a congruence relation. In particular, we use 
the 𝜖-tree technique which is model-independent.

2. We present a polynomial time equivalence checking algorithm for 
the ground branching bisimilarity.

1.3. Organization

The structure of the paper is as follows. Section 2 recalls the syntax 
and semantics of qCCS model. Section 3 introduces our branching bisim-

ilarity for qCCS and shows that it is a congruence relation. Section 4

gives the polynomial equivalence checking algorithm for the ground 
branching bisimilarity. Section 5 includes some concluding remarks.

2. Quantum CCS

In this paper, we will mainly follow the quantum CCS model pro-

posed by Feng et al. in [8], with one exception that we only allow 
guarded nondeterministic choice rather than general summation, which 
is necessary for the congruence result. In qCCS, we use 𝖱𝖾𝖺𝗅 to de-

note the set of real-valued classical data and 𝖰𝖻𝗍 to denote the set of 
quantum data (qubits). Accordingly, we assume two countable sets of 
variables: cVar for the set of classical variables, ranged over by 𝑥, 𝑦, ⋯, 
and qVar for the set of quantum variables, ranged over by 𝑞, 𝑟, ⋯. The 
set of real-valued expressions is denoted by Exp, ranged over by 𝑒. 
We also assume two types of channels in qCCS: cChan for classical 
channels, ranged over by 𝑐, 𝑑, ⋯, and qChan for quantum channels, 
ranged over by 𝑐, 𝑑, ⋯. Then the set of all channels is denoted as 
Chan = cChan ∪ qChan. A relabeling function 𝑓 is an injective function 
on Chan with 𝑓 (cChan) ⊆ cChan and 𝑓 (qChan) ⊆ qChan. A set of dis-

tinct quantum variables {𝑞1, ⋯ , 𝑞𝑛} is often abbreviate as 𝑞, when the 
number 𝑛 is unimportant or clear from the context.
Now we present the syntax of qCCS.
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Fig. 1. Operational semantics of qCCS.
Definition 2.1 (Quantum process [8]). The set of qCCS processes qProc
and the free quantum variable function 𝑞𝑣 ∶ qProc → 2qVar are defined 
inductively by the following rules:

(1) nil ∈ qProc, and 𝑞𝑣(nil) = ∅;

(2) 𝖠(𝑞) ∈ qProc, and 𝑞𝑣(𝖠(𝑞)) = 𝑞;
(3) 𝜏.𝑃 ∈ qProc, and 𝑞𝑣(𝜏.𝑃 ) = 𝑞𝑣(𝑃 );
(4) 𝑐?𝑥.𝑃 ∈ qProc, and 𝑞𝑣(𝑐?𝑥.𝑃 ) = 𝑞𝑣(𝑃 );
(5) 𝑐!𝑒.𝑃 ∈ qProc, and 𝑞𝑣(𝑐!𝑒.𝑃 ) = 𝑞𝑣(𝑃 );
(6) 𝑐?𝑞.𝑃 ∈ qProc, and 𝑞𝑣(𝑐?𝑞.𝑃 ) = 𝑞𝑣(𝑃 ) − {𝑞};

(7) If 𝑞 ∉ 𝑞𝑣(𝑃 ) then 𝑐!𝑞.𝑃 ∈ qProc, and 𝑞𝑣(𝑐!𝑞.𝑃 ) = 𝑞𝑣(𝑃 ) ∪ {𝑞};

(8) 𝑈 [𝑞].𝑃 ∈ qProc, and 𝑞𝑣(𝑈 [𝑞].𝑃 ) = 𝑞𝑣(𝑃 ) ∪ 𝑞;
(9) 𝑀[𝑞; 𝑥].𝑃 ∈ qProc, and 𝑞𝑣(𝑀[𝑞; 𝑥].𝑃 ) = 𝑞𝑣(𝑃 ) ∪ 𝑞;

(10)
∑
𝑖∈𝐼 𝜆𝑖.𝑃𝑖 ∈ qProc, and 𝑞𝑣(𝜏.𝑃 ) =

⋃
𝑖∈𝐼 𝑞𝑣(𝜆𝑖.𝑃𝑖);

(11) If 𝑞𝑣(𝑃 ) ∩ 𝑞𝑣(𝑄) = ∅ then 𝑃 ∥𝑄 ∈ qProc, and 𝑞𝑣(𝑃 ∥𝑄) = 𝑞𝑣(𝑃 ) ∪
𝑞𝑣(𝑄);

(12) 𝑃 [𝑓 ] ∈ qProc, and 𝑞𝑣(𝑃 [𝑓 ]) = 𝑞𝑣(𝑃 );
(13) 𝑃∖𝐿 ∈ qProc, and 𝑞𝑣(𝑃∖𝐿) = 𝑞𝑣(𝑃 );
(14) if 𝑏 then 𝑃 ∈ qProc, and 𝑞𝑣(if 𝑏 then 𝑃 ) = 𝑞𝑣(𝑃 ),

where 𝑃 , 𝑄 ∈ qProc, 𝜆𝑖 ∈ {𝜏, 𝑐?𝑥, 𝑐!𝑒, 𝑐?𝑞, 𝑐!𝑞, 𝑈 [𝑞], 𝑀[𝑞; 𝑥]}, 𝑓 is a re-

labeling function, 𝐿 ⊆ Chan, and 𝑏 is a boolean expression.

Most constructors are standard as in the classical CCS [18]. We only 
briefly explain some new constructors in quantum scenario: 𝑐?𝑞 (𝑐!𝑞
resp.) stands for the action of quantum-input (quantum-output resp.) 
a qubit via quantum channel 𝑐; 𝑈 [𝑞] denotes the action of applying 
a trace-preserving super-operator [8] 𝑈 on the qubits 𝑞; 𝑀[𝑞; 𝑥] denote 
the action of performing the measurement on qubits 𝑞 according to 
the observable 𝑀 , where the classical variable 𝑥 is used to store the 
measurement result; 𝖠(𝑞) is a process constant defined by the equa-

tion 𝖠(𝑞) 
def
= 𝑃 , where 𝑃 ∈ qProc with 𝑞𝑣(𝑃 ) ⊆ 𝑞. The notion of free and 

bound classical variables has their usual meanings as in classical CCS. 
Only note that the variable 𝑥 appears in quantum measurement oper-

ator 𝑀[𝑞; 𝑥] is bound. Given a qCCS process 𝑃 , if it contains no free 
classical variable (i.e., 𝑓𝑣(𝑃 ) = ∅), then we call it a closed quantum pro-

cess.

Here we introduce some unitary operators that we will use later. 
3

The Hadamard operator 𝐻 is a single-qubit operation that maps the 
basis state |0⟩ to |0⟩+|1⟩√
2

and |1⟩ to |0⟩−|1⟩√
2

. The four Pauli operators 𝜎0, 

𝜎1, 𝜎2 and 𝜎3 form a basis for the real vector space of 2 × 2 Hermitian 
matrices. Under the computational basis, these operators can be defined 
as follows:

𝐻 = 1√
2

(
1 1
1 −1

)
, 𝜎0 =

(
1 0
0 1

)
,

𝜎1 =
(
0 1
1 0

)
, 𝜎2 =

(
1 0
0 −1

)
, 𝜎3 =

(
0 −𝑖
𝑖 0

)
.

Note that all unitary transformations are trace-preserving super-

operators [8], including the Hadamard operator and the Pauli oper-

ators.

A few more notations are necessary for presenting the operational 
semantics of qCCS. Given any quantum variable 𝑞 ∈ qVar, its associating 
2-dimensional Hilbert space is denoted by 𝑞 . Given a nonempty subset 
𝑆 ⊆ qVar, we use 𝑆 to denote the tensor product space 

⨂
𝑞∈𝑆 𝑞 and 

use 
𝑆

to denote the space 
⨂

𝑞∉𝑆 𝑞 . The state space of a system that 
contains all quantum variables is then denoted as  =

⨂
𝑞∈qVar 𝑞 .

Given a closed quantum process 𝑃 and a density operator 𝜌 on the 
Hilbert space 𝑆 (where 𝑆 is a finite set with 𝑞𝑣(𝑃 ) ⊆ 𝑆), we call the 
pair ⟨𝑃 , 𝜌⟩ a configuration. Let Con be the set of all configurations, 
ranged over by 𝐴, 𝐵, 𝐶, ⋯. Given an equivalence  on Con, we use 
Con∕ to denote the set of equivalence classes of Con under  . We 
will write 𝐴  𝐵 for (𝐴, 𝐵) ∈  , and use [𝐴] to represent the equiva-

lence class containing 𝐴. The set of nondeterministic actions 𝐴𝑐𝑡𝑛 takes 
the following form:

{𝜏} ∪ {𝑐?𝑣, 𝑐!𝑣 ||| 𝑐 ∈ cChan, 𝑣 ∈ 𝖱𝖾𝖺𝗅}

∪ {𝑐?𝑟, 𝑐!𝑟 ||| 𝑐 ∈ qChan, 𝑟 ∈ qVar}.

The set of probabilistic actions is 𝐴𝑐𝑡𝑝 = {𝑝𝜏 ||| 0 < 𝑝 < 1}. Then the set 
of all possible actions is 𝐴𝑐𝑡 =𝐴𝑐𝑡𝑛 ∪𝐴𝑐𝑡𝑝. We write 𝓁 for elements of 
𝐴𝑐𝑡.

The operational semantics of qCCS is given in Fig. 1, where 𝓁 ∈𝐴𝑐𝑡. 
Here the semantics of quantum measurement is given as a collection of 
(probabilistic) silent transitions, which helps establish the congruence 
result in the following sections.

Most of the rules in Fig. 1 are straightforward. We only explain the 

measurement rule (i.e., Meas). It characterizes that, after measurement 
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the configuration will evolve into different configurations with corre-

sponding probabilities depending on different measurement outcomes. 
Notice that similar to [7], the rule for unitary transformation (i.e.,

Oper) and measurement on quantum systems (i.e., Meas) are consid-

ered as (probabilistic) silent actions performed by the quantum systems. 
One can refer to [7] for more explanations.

3. Branching bisimulation between quantum processes

As mentioned earlier, [8] proposes the strong and weak bisimu-

lation for qCCS as tools to capture the idea that a quantum process 
approximately implements its specification. However as in real spec-

ification, such approximation is essentially branching bisimulation as 
there will be no silent actions in specification. As a matter of fact, in 
concurrency society, branching bisimulation is generally regarded as 
the finest practical equivalence [25] of the whole linear time-branching 
time spectrum. It is then natural to build the branching bisimulation for 
qCCS and study its algebraic properties. In this section, we will propose 
a branching bisimilarity for qCCS model and then prove its congruence 
property.

3.1. Quantum branching bisimulation

In Fig. 1 we have introduced probabilistic silent transitions for quan-

tum measurement as the rule of Meas. Thus to build branching bisimu-

lation for qCCS, we can take the techniques in [11] and then facilitate 
the relating argument. We start with the definition of 𝜖-tree in [11], 
which is a convenient technical gadget for our work.

Definition 3.1 (𝜖-tree [11]). Let  be an equivalence on Con and 𝐴 ∈
Con be a configuration. An 𝜖-tree 𝑡𝐴


of 𝐴 with regard to  is a labeled 

tree such that the following statements hold.

• Each node of 𝑡𝐴


is labeled by an element of Con and each edge is 
labeled by an element of (0, 1]. The root of 𝑡𝐴


is labeled by 𝐴.

• All the labels of the nodes of 𝑡𝐴


are in [𝐴] .

• If a node labeled 𝐵 has only one child 𝐵′, then the edge from 𝐵 to 
𝐵′ is labeled 1 and 𝐵

𝜏
←←←←←←→𝐵′.

• If a node labeled 𝐵 has 𝑘 children 𝐵1, ⋯ , 𝐵𝑘 and each edge from 
𝐵 to 𝐵𝑖 is labeled 𝑝𝑖, then {𝑝𝑖}𝑖∈[𝑘] is a probability distribution and 

𝐵

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
∐
𝑖∈[𝑘]𝐵𝑖.

Here 𝐵
∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
∐
𝑖∈[𝑘]𝐵𝑖 is the collective silent transition defined 

in [11], which means that 𝐵 can perform a silent transition to {𝐵𝑖}𝑖∈[𝑘]
with corresponding probability {𝑝𝑖}𝑖∈[𝑘]. Intuitively, 𝜖-tree is a general-

ization of the classical state-preserving internal action sequence. For a 
better understanding of 𝜖-tree, consider the following example.

Example 3.2. To the process:

𝖠(𝑞)
def
= 𝑀[𝑞;𝑥].if 𝑥 = 0 then 𝐻[𝑞].𝑐!0.𝐧𝐢𝐥

else 𝐻[𝑞].𝜎2[𝑞].𝐴(𝑞).

Consider any density operator 𝜌 ∈ ({𝑞}). Let 𝜌0 = [|0⟩]𝑞 ⊗ 𝜌, 𝜌1 =

[|1⟩]𝑞 ⊗ 𝜌, 𝜌2 =
[ |0⟩−|1⟩√

2

]
𝑞

⊗ 𝜌, and 𝜌3 =
[ |0⟩+|1⟩√

2

]
𝑞

⊗ 𝜌. Here we use 

the symbol [Ψ]𝑞 to emphasize that the given state Ψ is actually asso-

ciated with the quantum variable 𝑞. Then consider any equivalence 
satisfying that [⟨𝖠(𝑞), 𝜌3⟩] = [⟨𝐻[𝑞].𝑐!0.𝐧𝐢𝐥, 𝜌0⟩] = [⟨𝑐!0.𝐧𝐢𝐥, 𝜌3⟩] =
[⟨𝐻[𝑞].𝜎2[𝑞].𝖠(𝑞), 𝜌1⟩] = [⟨𝜎2[𝑞].𝖠(𝑞), 𝜌2⟩] . The infinite 𝜖-tree of ⟨𝖠(𝑞), 𝜌3⟩ is given in Fig. 2.

A branch 𝜋 in an 𝜖-tree is either a finite path from the root to a 
4

leaf or an infinite path from the root. For a finite branch 𝜋, we write 
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⟨𝖠(𝑞), 𝜌3⟩
⟨𝐻[𝑞].𝑐!0.𝐧𝐢𝐥, 𝜌0⟩ ⟨𝐻[𝑞].𝜎2[𝑞].𝖠(𝑞), 𝜌1⟩

⟨𝑐!0.𝐧𝐢𝐥, 𝜌3⟩ ⟨𝜎2[𝑞].𝖠(𝑞), 𝜌2⟩

⟨𝖠(𝑞), 𝜌3⟩

1∕2

1

1∕2

1

1

Fig. 2. The 𝜖-tree for ⟨𝖠(𝑞), 𝜌3⟩.
|𝜋| for its length and use 𝜋(𝑖) to denote the label of its 𝑖-th edge. The 
probability 𝖯(𝜋) of a finite branch 𝜋 is then defined as 

∏
𝑖≤|𝜋| 𝜋(𝑖). The 

convergence probability 𝖯𝑐(𝑡𝐴

) is defined as follows, which is intuitively 

the probability of the portion of finite branches in 𝑡𝐴


.

𝖯𝑐(𝑡𝐴

)

def
= lim

𝑘→∞
(
∑

{𝖯(𝜋) ∣ 𝜋 is a finite branch in 𝑡𝐴


such that |𝜋| ≤ 𝑘}).
An 𝜖-tree 𝑡𝐴


is regular if 𝖯𝑐(𝑡𝐴


) = 1.

Based on the 𝜖-tree, two types of transitions are introduced in 
Definition 3.3 (Definition 3.4 resp.), which are used to character-

ize state-changing non-probabilistic actions (probabilistic actions resp.) 
that should be bisimulated explicitly.

Definition 3.3 (𝓁-transition [11]). Suppose  ∈ Con∕ and ¬(𝓁 = 𝜏 ∧
 = [𝐴] ). We say there is an 𝓁-transition from 𝐴 to  with regard 

to  , written 𝐴 ⇝

𝓁
←←←←←←←→ , if there exists a regular 𝜖-tree 𝑡𝐴


such that, 

𝐿 
𝓁
←←←←←←←→𝐿′ ∈ for every leaf 𝐿 of 𝑡𝐴


.

Intuitively, 𝓁-transition is a generalization of the transition ⇒

𝓁
←←←←←←←→

in the classical CCS model, where the state-preserving internal action 

sequence ⇒ is replaced by a regular 𝜖-tree, and the action 
𝓁
←←←←←←←→ is either 

an external action or a state-changing internal action.

We still need to formalize the simulation of probabilistic actions. 

Suppose 𝐿 
∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
∐
𝑖∈[𝑘] 𝐿𝑖 and some 𝐿𝑖 falls into an equivalence 

class  ≠ [𝐿] . Define

𝖯

(
𝐿

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

)
def
=

∑
𝑖∈[𝑘]

{
𝑝𝑖 ∣𝐿

𝑝𝑖𝜏
←←←←←←←←←←←←←→𝐿𝑖 ∈

}
.

The normalized probability is defined as the conditional probability of 
leaving [𝐿] to , i.e.,

𝖯

(
𝐿

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

)
def
= 𝖯

(
𝐿

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

)
∕
(
1 − 𝖯

(
𝐿

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ [𝐿]
))

.

Intuitively, normalized probability characterizes the conditional proba-

bility of transferring into a new equivalent class with respect to equiv-

alence  via one step of probabilistic silent actions (i.e., the collective 
silent transition). Next we promote this conception to 𝜖-tree by consid-

ering every leaf and then get the so-called 𝑝-transition.

Definition 3.4 (𝑝-transition [11]). Suppose  ∈ Con∕ and  ≠ [𝐴] . 

We say there is a 𝑝-transition from 𝐴 to  with regard to  , written 
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𝐴 ⇝

𝑝
←←←←←←→, if there exists a regular 𝜖-tree 𝑡𝐴


satisfying that 𝐿 

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→∐
𝑖∈[𝑘]𝐿𝑖 and the normalized probability 𝖯

(
𝐿

∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

)
= 𝑝 for 

every leaf 𝐿 of 𝑡𝐴


.

Intuitively, 𝑝-transition is the counterpart of 𝓁-transition for proba-

bilistic actions, which requires that after going through a regular 𝜖-tree, 
every evolved configuration can arrive at a new equivalence class with 
the same normalized probability 𝑝.

Suppose ⟨𝑃 , 𝜌⟩ is a configuration, the partial trace of 𝜌 with respect 
to 𝑞𝑣(𝑃 ) can be defined as tr𝑞𝑣(𝑃 )(𝜌), which is exactly the reduced quan-

tum state of 𝜌 on the environment of system 𝑃 . Now we first define the 
ground branching bisimulation and bisimilarity for qCCS.

Definition 3.5 (Ground branching bisimulation). An equivalence relation 
 ⊆ Con × Con is called a ground branching bisimulation if for any ⟨𝑃 , 𝜌⟩, ⟨𝑄, 𝜎⟩ ∈ Con, ⟨𝑃 , 𝜌⟩  ⟨𝑄, 𝜎⟩ implies that

1. 𝑞𝑣(𝑃 ) = 𝑞𝑣(𝑄), tr𝑞𝑣(𝑃 )(𝜌) = tr𝑞𝑣(𝑄)(𝜎);

2. If ⟨𝑃 , 𝜌⟩ ⇝

𝓁
←←←←←←←→  ∈ Con∕ such that ¬(𝓁 = 𝜏 ∧ = [⟨𝑃 , 𝜌⟩]), then ⟨𝑄, 𝜎⟩ ⇝

𝓁
←←←←←←←→ ;

3. If ⟨𝑃 , 𝜌⟩ ⇝

𝑝
←←←←←←→ ∈Con∕ such that ≠[⟨𝑃 , 𝜌⟩], then ⟨𝑄, 𝜎⟩ ⇝

𝑝
←←←←←←→

.

The largest ground branching bisimulation, which is guaranteed to exist 
using standard arguments [8], is called ground branching bisimilarity and 
is denoted by ≃𝑔𝑏.

In the above definition, the term ground is used to emphasize that we 
do not consider super-operator application when matching a quantum 
input action. In contrast, the weak bisimilarity proposed in [8] separates 
quantum input from other actions and considers the effects of super-

operators in quantum input clause.

Following [4], we are then ready to introduce the notion of closeness 
under super-operator application.

Definition 3.6 ([4]). An relation  ⊆ Con × Con is closed under super-

operator application if ⟨𝑃 , 𝜌⟩  ⟨𝑄, 𝜎⟩ implies that ⟨𝑃 , 𝑈 (𝜌)⟩  ⟨𝑄,
𝑈 (𝜎)⟩ for any super-operator 𝑈 acting on 

𝑞𝑣(𝑃 ), where 
𝑞𝑣(𝑃 ) stands 

for the tensor product space 
⨂

𝑞∉𝑞𝑣(𝑃 )𝑞 .

Now we can formalize branching bisimulation in the quantum sce-

nario.

Definition 3.7 (Branching bisimulation). An equivalence relation  ⊆
Con × Con is called a branching bisimulation if it satisfies that

1.  is a ground branching bisimulation;

2.  is closed under all super-operator application.

Then two quantum configurations ⟨𝑃 , 𝜌⟩ and ⟨𝑄, 𝜎⟩ are called branch-

ing bisimilar, denoted by ⟨𝑃 , 𝜌⟩ ≃ ⟨𝑄, 𝜎⟩, if there exists a branching 
bisimulation  satisfying that ⟨𝑃 , 𝜌⟩  ⟨𝑄, 𝜎⟩.

We can also lift the branching bisimulation relation from configura-

tions to processes. Note in Definition 3.8 we reuse the ≃ notation as its 
meaning should be clear from the context.

Definition 3.8. Two quantum processes 𝑃 and 𝑄 are branching bisim-

ilar, denoted as 𝑃 ≃𝑄, if for any quantum state 𝜌 and any indexed set 𝑣
of classical values, ⟨𝑃 {𝑣∕𝑥}, 𝜌⟩ ≃ ⟨𝑄{𝑣∕𝑥}, 𝜌⟩. Here 𝑥 is the set of free 
5

classical variables contained in 𝑃 and 𝑄.
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We give two examples for further explanations about the new equiv-

alence relations. Example 3.9 briefly compare our new branching bisim-

ulation and the ones in the literature. Example 3.10 shows how to model 
classical quantum algorithm by ≃.

Example 3.9. Let 𝑈 = 𝜎1𝐻 . Suppose 𝑃 =𝐻[𝑞].𝐧𝐢𝐥+𝑈 [𝑞].𝐧𝐢𝐥+𝑀0,1[𝑞;

𝑥].𝐧𝐢𝐥 and 𝑄 =𝐻[𝑞].𝐧𝐢𝐥 + 𝑈 [𝑞].𝐧𝐢𝐥. Let 𝜌 =
[ |0⟩+|1⟩√

2

]
𝑞

⊗ 𝜌′, where 𝜌′ ∈

({𝑞}).

• According to [7], ⟨𝑃 , 𝜌⟩ and ⟨𝑄, 𝜌⟩ are weak bisimilar. Particularly, ⟨𝑄, 𝜌⟩ can simulate the action 𝑀0,1[𝑞; 𝑥] of ⟨𝑃 , 𝜌⟩ by choosing its 
actions 𝐻[𝑞] and 𝑈 [𝑞] with respective probabilities one half.

• According to the probabilistic branching bisimulation given in 
[17], configurations ⟨𝐧𝐢𝐥, [0]𝑞 ⊗𝜌′⟩ and ⟨𝐧𝐢𝐥, [1]𝑞 ⊗𝜌′⟩ are regarded 
as equal, which then implies that ⟨𝑃 , 𝜌⟩ and ⟨𝑄, 𝜌⟩ are bisimilar 
as well. Yet their equivalence holds by a completely different rea-

son: state changes of contexts caused by quantum operations are 
ignored there.

• In our framework, ⟨𝑃 , 𝜌⟩ and ⟨𝑄, 𝜌⟩ are not branching bisimilar to 

each other. Particularly, the 𝑝-transition ⟨𝑃 , 𝜌⟩ ⇝≃
1∕2
←←←←←←←←←←←←←←→ [⟨𝐧𝐢𝐥, [0]𝑞 ⊗

𝜌′⟩]≃ cannot be simulated by ⟨𝑄, 𝜌⟩. It should be noted that, among 
these three equivalences, our branching bisimilarity is the only one 
that can both preserve the branching structures of the evolving 
configurations and keep track of changes of quantum states.

Example 3.10. Given a black box function (an oracle) 𝑂 which delivers 
the result of the transformation 𝑂 |𝑥⟩ |𝑞⟩ = |𝑥⟩ |𝑞 ⊕ 𝑓 (𝑥)⟩, where 𝑓 (𝑥) =
0 for all 0 ≤ 𝑥 < 2𝑛 except a unique 𝑥0, for which 𝑓 (𝑥0) = 1. Let |𝜑⟩ be 
the equal superposition state 1

2𝑛−1
∑2𝑛−1
𝑥=0 |𝑥⟩. Grover’s algorithm [21] can 

output 𝑥0 with probability (1) in only (
√
2𝑛) steps. Therefore by 

repeating Grover’s algorithm a constant number of times we can find 
𝑥0 with probability 1. This procedure can be described by the following 
qCCS-process.

𝐺𝑆 = 𝐻⊗𝑛[𝑞1,⋯ , 𝑞𝑛].𝜎1[𝑞].𝐻[𝑞].{𝐺𝐼[𝑞1,⋯ , 𝑞𝑛, 𝑞]}𝑅.

𝑀[𝑞1,⋯ , 𝑞𝑛;𝑥].𝑆𝑒𝑡0[𝑞1,⋯ , 𝑞𝑛, 𝑞].

if 𝑓 (𝑥) = 1 then 𝑑!𝑥.𝐧𝐢𝐥 else 𝐺𝑆

where 𝐺𝐼 = (2 |𝜑⟩ ⟨𝜑| − 𝐼)𝑂 is the Grover iteration operator and 
𝑅 ≈ ⌈𝜋√2𝑛∕4⌉ is the Grover iteration repeating times. Let 𝜌 =
[|0⟩⊗𝑛]𝑞1 ,⋯,𝑞𝑛 ⊗ [|0⟩]𝑞 ⊗ 𝜌′, where 𝜌′ ∈ ({𝑞1 ,⋯,𝑞𝑛,𝑞}

). Then there 

exists an 𝜖-tree for configuration ⟨𝐺𝑆, 𝜌⟩ such that ⟨𝐺𝑆, 𝜌⟩ ⇝≃
𝑑!𝑥0
←←←←←←←←←←←←←←←←←←→

[⟨𝐧𝐢𝐥, 𝜌⟩]≃.

3.2. Congruence property

Congruence is one of the most desired properties for a relation, es-

pecially for compositional systems. In this section, we will show that 
the branching bisimulation proposed in Section 3.1 is indeed a congru-

ence. The congruence proof follows a similar strategy as in [11] and 
[27]. However, branching bisimilarity in the quantum setting has addi-

tional requirements, including equal partial trace and closeness under 
super-operator application, thereby making establishing such a congru-

ence result much more complicated. We start by showing that ≃ is an 
equivalence relation.

Theorem 3.11. ≃ is an equivalence and it is the largest branching bisimu-

lation on Con.

Proof. Suppose {𝑖}𝑖∈𝐼 is a collection of branching bisimulation on ⋃

Con, we can show that the equivalence closure of 𝑖∈𝐼 𝑖 is also a 
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branching bisimulation. The proof is similar to the one of Proposition 
4.2 in [11]. □

We then proceed to show that the bisimilarity ≃ for configurations 
is preserved by all static constructors.

Lemma 3.12. If ⟨𝑃 , 𝜌⟩ ≃ ⟨𝑄, 𝜎⟩ then

(1) ⟨𝑃 ∥𝑅, 𝜌⟩ ≃ ⟨𝑄 ∥𝑅, 𝜎⟩;
(2) ⟨𝑃 [𝑓 ], 𝜌⟩ ≃ ⟨𝑄[𝑓 ], 𝜎⟩;
(3) ⟨𝑃∖𝐿, 𝜌⟩ ≃ ⟨𝑄∖𝐿, 𝜎⟩;
(4) ⟨if 𝑏 then 𝑃 , 𝜌⟩ ≃ ⟨if 𝑏 then 𝑄, 𝜎⟩.
Proof. We only give the detail of item (1) as an example, as the other 
cases are simpler or easier.

Let 
def
= {(⟨𝑃 ∥𝑅, 𝜌⟩, ⟨𝑄 ∥𝑅, 𝜎⟩) ∣ ⟨𝑃 , 𝜌⟩ ≃ ⟨𝑄, 𝜎⟩}} and  

def
= ( ∪ ≈

)∗. It will be enough to show that  is a branching bisimulation. 
Suppose ⟨𝑃 ∥ 𝑅, 𝜌⟩  ⟨𝑄 ∥ 𝑅, 𝜎⟩ where ⟨𝑃 , 𝜌⟩ ≃ ⟨𝑄, 𝜎⟩. By the def-

inition of ≃ we have 𝑞𝑣(𝑃 ) = 𝑞𝑣(𝑄) and tr𝑞𝑣(𝑃 )(𝜌) = tr𝑞𝑣(𝑄)(𝜎). Thus 
𝑞𝑣(𝑃 ∥𝑅) = 𝑞𝑣(𝑄 ∥𝑅) and tr𝑞𝑣(𝑃∥𝑅)(𝜌) = tr𝑞𝑣(𝑄∥𝑅)(𝜎) hold.

According to Definition 3.7, we also have ⟨𝑃 , 𝑈 (𝜌)⟩ ≃ ⟨𝑄, 𝑈 (𝜎)⟩
for any super-operator 𝑈 acting on 

𝑞𝑣(𝑃 ), which implies that ⟨𝑃 ∥
𝑅, 𝑈 (𝜌)⟩  ⟨𝑄 ∥ 𝑅, 𝑈 (𝜎)⟩ for any super-operator 𝑈 acting on 

𝑞𝑣(𝑃 ). 
Hence  is closed under super-operator application. According to Theo-

rem 3.11, we have ≃ is closed under super-operator application, thus 
is also closed under super-operator application. Then we show that 
is a ground branching bisimulation. According to Definition 3.5, it boils 
down to showing that whenever ⟨𝑃 ∥𝑅, 𝜌⟩  ⟨𝑄 ∥𝑅, 𝜎⟩, the following 
two requirements hold:

i. If ⟨𝑃 ∥ 𝑅, 𝜌⟩ ⇝

𝓁
←←←←←←←→  ∈ Con∕ and ¬(𝓁 = 𝜏 ∧  = [⟨𝑃 ∥ 𝑅, 𝜌⟩]), 

then ⟨𝑄 ∥𝑅, 𝜎⟩ ⇝

𝓁
←←←←←←←→ ;

ii. If ⟨𝑃 ∥ 𝑅, 𝜌⟩ ⇝

𝑝
←←←←←←→  ∈ Con∕ such that  ≠ [⟨𝑃 ∥ 𝑅, 𝜌⟩], then ⟨𝑄 ∥𝑅, 𝜎⟩ ⇝

𝑝
←←←←←←→ .

Below we only give detailed proof for the first statement. Proof for the 
second one is similar and hence omitted here.

Consider an 𝓁-transition ⟨𝑃 ∥𝑅, 𝜌⟩ ⇝

𝓁
←←←←←←←→ . It consists of a regular 

𝜖-tree 𝑡⟨𝑃∥𝑅,𝜌⟩ of ⟨𝑃 ∥ 𝑅, 𝜌⟩ with regard to  and, for every leaf 𝐿 of 

𝑡⟨𝑃∥𝑅,𝜌⟩, a transition 𝐿 
𝓁
←←←←←←←→𝐿′ ∈ . We will construct an 𝓁-transition ⟨𝑄 ∥

𝑅, 𝜌⟩ ⇝

𝓁
←←←←←←←→  by induction on the structure of 𝑡⟨𝑃∥𝑅,𝜌⟩. It is carried out 

by a careful case analysis about the immediate transitions that ⟨𝑃 ∥
𝑅, 𝜌⟩ can perform.

• The root of 𝑡⟨𝑃∥𝑅,𝜌⟩ can perform the internal transition 
𝜏
←←←←←←→. Three 

subcases are possible.

i. This transition is caused by  solely, that is, ⟨𝑅, 𝜌⟩ 𝜏←←←←←←→⟨𝑅′, 𝑈 ′(𝜌)⟩ and ⟨𝑃 ∥ 𝑅, 𝜌⟩ 𝜏←←←←←←→ ⟨𝑃 ∥ 𝑅′, 𝑈 ′(𝜌)⟩ for some 𝑅′ and 
super-operator 𝑈 ′. Then ⟨𝑄 ∥ 𝑅, 𝜎⟩ 𝜏←←←←←←→ ⟨𝑄 ∥ 𝑅′, 𝑈 ′(𝜎)⟩. As ≃ is 
closed under super-operator application, we have ⟨𝑃 , 𝑈 ′(𝜌)⟩ ≃⟨𝑄, 𝑈 ′(𝜎)⟩, which follows that ⟨𝑃 ∥𝑅′, 𝑈 ′(𝜌)⟩  ⟨𝑄 ∥𝑅′, 𝑈 ′(𝜎)⟩.

ii. This transition is caused by 𝑃 solely, that is, ⟨𝑃 , 𝜌⟩ 𝜏←←←←←←→ ⟨𝑃 ′, 𝜌′⟩
and ⟨𝑃 ∥ 𝑅, 𝜌⟩ 𝜏←←←←←←→ ⟨𝑃 ′ ∥ 𝑅, 𝜌′⟩ for some 𝑃 ′ and 𝜌′. If ⟨𝑃 ′, 𝜌′⟩ ≃⟨𝑃 , 𝜌⟩, then ⟨𝑃 ′ ∥ 𝑅, 𝜌′⟩  ⟨𝑄 ∥ 𝑅, 𝜎⟩. If ⟨𝑃 ′, 𝜌′⟩ ≄ ⟨𝑃 , 𝜌⟩, then ⟨𝑄, 𝜎⟩ ⇝≃

𝜏
←←←←←←→ [⟨𝑃 ′, 𝜌′⟩]≃. For every leaf ⟨𝑄′′, 𝜎′′⟩ in the regu-

lar 𝜖-tree of ⟨𝑄, 𝜎⟩, there exists a configuration ⟨𝑄′, 𝜎′⟩ such 
that ⟨𝑄′′, 𝜎′′⟩ 𝜏←←←←←←→ ⟨𝑄′, 𝜎′⟩ ∈ [⟨𝑃 ′, 𝜌′⟩]≃. We then have ⟨𝑄′′ ∥
𝑅, 𝜎′′⟩  ⟨𝑄 ∥𝑅, 𝜎⟩  ⟨𝑃 ∥𝑅, 𝜌⟩  ⟨𝑃 ′ ∥𝑅, 𝜌′⟩  ⟨𝑄′ ∥𝑅, 𝜎′⟩. 
Thus ⟨𝑄 ∥ 𝑅, 𝜎⟩, ⟨𝑄′′, 𝜎′′⟩ and ⟨𝑄′ ∥ 𝑅, 𝜎′⟩ are related by . 
We can then continue to construct an 𝜖-tree for ⟨𝑄′ ∥𝑅, 𝜎′⟩ by 
6

induction on the structure of the 𝜖-tree of ⟨𝑃 ′ ∥𝑅, 𝜌′⟩.
Information Processing Letters 186 (2024) 106492

iii. This transition is induced by an interaction between quantum 
process 𝑃 and 𝑅. Then w.l.o.g., we can assume that

⟨𝑃 ,𝜌⟩ 𝑐?𝑞
←←←←←←←←←←←←←→ ⟨𝑃 ′, 𝜌⟩, ⟨𝑅,𝜌⟩ 𝑐!𝑞

←←←←←←←←←←←←→ ⟨𝑅′, 𝜌⟩,
and ⟨𝑃 ∥ 𝑅, 𝜌⟩ 𝜏←←←←←←→ ⟨𝑃 ′ ∥ 𝑅′, 𝜌⟩. Then ⟨𝑅, 𝜂⟩ 𝑐!𝑞←←←←←←←←←←←←→ ⟨𝑅′, 𝜂⟩ for any 
𝜂 ∈ (). From the assumption that ⟨𝑃 , 𝜌⟩ ≃ ⟨𝑄, 𝜎⟩, we have ⟨𝑄, 𝜎⟩ ⇝≃

𝑐?𝑞
←←←←←←←←←←←←←→ [⟨𝑃 ′, 𝜌⟩]≃. For every leaf ⟨𝑄′′, 𝜎′′⟩ in the regular 

𝜖-tree of ⟨𝑄, 𝜎⟩, there exists some 𝑄′ such that ⟨𝑄′′, 𝜎′′⟩ 𝑐?𝑞←←←←←←←←←←←←←→⟨𝑄′, 𝜎′′⟩ ∈ [⟨𝑃 ′, 𝜌′⟩]≃. These together give us ⟨𝑄′′ ∥ 𝑅, 𝜎′′⟩ 𝜏←←←←←←→⟨𝑄′ ∥𝑅′, 𝜎′′⟩ and ⟨𝑃 ′ ∥𝑅′, 𝜌⟩  ⟨𝑄′ ∥𝑅′, 𝜎′′⟩.
• The root of 𝑡⟨𝑃∥𝑅,𝜌⟩ can perform the probabilistic transition ∐

𝑖∈[𝑘] 𝑝𝑖𝜏
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→. Two subcases are possible.

i. This transition is caused by 𝑅 solely, that is, ⟨𝑅, 𝜌⟩ ∐𝑖∈[𝑘] 𝑝𝑖𝜏
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→∐

𝑖∈[𝑘]⟨𝑅𝑖, 𝑈𝑖(𝜌)⟩ and

⟨𝑃 ∥𝑅,𝜌⟩ ∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
∐
𝑖∈[𝑘]

⟨𝑃 ∥𝑅𝑖,𝑈𝑖(𝜌)⟩
for some super-operators 𝑈𝑖. Then we have ⟨𝑄 ∥𝑅, 𝜎⟩ ∐𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→∐
𝑖∈[𝑘]⟨𝑄 ∥ 𝑅𝑖, 𝑈𝑖(𝜎)⟩. As ≃ is closed under super-operator ap-

plication, we have ⟨𝑃 , 𝑈𝑖(𝜌)⟩ ≃ ⟨𝑄, 𝑈𝑖(𝜎)⟩ for all 𝑖 ∈ [𝑘], and 
then ⟨𝑃 ∥𝑅𝑖, 𝑈𝑖(𝜌)⟩  ⟨𝑄 ∥𝑅𝑖, 𝑈𝑖(𝜎)⟩ by the definition of  .

ii. This transition is caused by 𝑃 solely, that is, ⟨𝑃 , 𝜌⟩ ∐𝑖∈[𝑘] 𝑝𝑖𝜏
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→∐

𝑖∈[𝑘]⟨𝑃𝑖, 𝜌𝑖⟩ and

⟨𝑃 ∥𝑅,𝜌⟩ ∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
∐
𝑖∈[𝑘]

⟨𝑃𝑖 ∥𝑅,𝜌𝑖⟩.
There are two cases. In the first case ⟨𝑃𝑖, 𝜌𝑖⟩ ≃ ⟨𝑃 , 𝜌⟩ for all 𝑖 ∈
[𝑘], then ⟨𝑃𝑖 ∥ 𝑅, 𝜌𝑖⟩  ⟨𝑄 ∥ 𝑅, 𝜎⟩ for all 𝑖 ∈ [𝑘]. In the second 
case, without loss of generality, we assume ⟨𝑃1, 𝜌1⟩ ≄ ⟨𝑃 , 𝜌⟩. 
Let 𝑟 = 𝖯≃

(⟨𝑃 ,𝜌⟩ ∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ [⟨𝑃1, 𝜌1⟩]≃). As ⟨𝑃 , 𝜌⟩ ≃ ⟨𝑄, 𝜎⟩, 
we have ⟨𝑄, 𝜎⟩ ⇝≃

𝑟
←←←←←→ [⟨𝑃1, 𝜌1⟩]≃. For every leaf ⟨𝑄′′, 𝜎′′⟩ in 

the regular 𝜖-tree of ⟨𝑄, 𝜎⟩, ⟨𝑄′′, 𝜎′′⟩ ∐𝑗∈[𝑘′] 𝑞𝑗 𝜏
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

∐
𝑗∈[𝑘′]⟨𝑄𝑗, 𝜎𝑗⟩

such that 𝖯≃

(⟨𝑄,𝜎⟩ ∐
𝑗∈[𝑘′] 𝑞𝑗 𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ [⟨𝑃1, 𝜌1⟩]≃
)

= 𝑟. For these 

⟨𝑄𝑗, 𝜎𝑗⟩ ∈ [⟨𝑃1, 𝜌1⟩]≃, we see that ⟨𝑃1 ∥ 𝑅, 𝜌1⟩  ⟨𝑄𝑗 ∥ 𝑅, 𝜎𝑗⟩. 
We then continue to construct an 𝜖-tree for ⟨𝑄𝑗 ∥ 𝑅, 𝜎𝑗⟩ by in-

duction on the structure of the 𝜖-tree of ⟨𝑃𝑖 ∥𝑅, 𝜌1⟩.
• The root of 𝑡⟨𝑃∥𝑅,𝜌⟩ can perform the external transition 

𝓁
←←←←←←←→. This is 

similar to the first case and thus omitted here. □

Similar to the classical value-passing CCS, as a relation between 
quantum processes, ≃ is preserved by all constructors of qCCS.

Theorem 3.13 (Congruence property). If 𝑃 ≃𝑄 and 𝑃𝑖 ≃𝑄𝑖 for all 𝑖 ∈ 𝐼
then

(1)
∑
𝑖∈𝐼 𝜆𝑖.𝑃𝑖 ≃

∑
𝑖∈𝐼 𝜆𝑖.𝑄𝑖,

where 𝜆𝑖 ∈ {𝜏, 𝑐?𝑥, 𝑐!𝑒, 𝑐?𝑞, 𝑐!𝑞, 𝑈 [𝑞], 𝑀[𝑞; 𝑥]};

(2) 𝑃 ∥𝑅 ≃𝑄 ∥𝑅;

(3) 𝑃 [𝑓 ] ≃𝑄[𝑓 ];
(4) 𝑃∖𝐿 ≃𝑄∖𝐿;

(5) if 𝑏 then 𝑃 ≃ if 𝑏 then 𝑄.

Proof. The proof for (1) is similar to Theorem 38 of [7], and the others 

are direct from Lemma 1. □
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4. Equivalence checking algorithm

Efficient algorithms for checking whether an implementation real-

izes the specification faithfully or whether two implementations are 
equivalent to each other are quite important in practice. So far, all 
verification algorithms on qCCS (with semantics given in Fig. 1) in 
the literature are restricted to ground version [22,6]. The reason is 
that verification for closeness under super-operator application is gen-

erally infeasible due to the infinity of all possible super-operators. In 
this section, we will build a polynomial algorithm which checks ground 
branching bisimilarity for quantum processes.

4.1. Description of the algorithm

Before giving the description of the algorithm, we first introduce 
some necessary notations and conceptions. Given a non-empty set 
𝑆 ⊆ 𝐶𝑜𝑛, a partition  of 𝑆 is a collection of pairwise disjoint sub-

sets of 𝑅 whose union is equal to 𝑆 . Given a partition  of set 𝑆 and 
a configuration 𝐴 ∈ 𝑆 , we use  to denote the equivalence relation 
induced by  and [𝐴] to denote the equivalence class containing 𝐴. 
Suppose 1 and 2 are two partitions of some set 𝑆 , if for each  ∈ 2
there exists some ′ ∈ 1 such that  ⊆ ′, then we say that 2 is finer

than 1 (or equivalently, 1 is coarser than 2). Given a configuration 
𝐴 ∈ 𝐶𝑜𝑛, the set of configurations reachable from 𝐴 is denoted by 𝑅𝐴.

Since branching bisimilarity [25] is undecidable for the full CCS 
model with parallel composition and restriction operators, the general 
equivalence checking problem for ground branching bisimilarity on the 
full qCCS model is also undecidable. Thus in this section, we will focus 
on finite-state systems. Therefore the set 𝑅𝐴 is assumed to be finite to 
any quantum process 𝐴. In this case, an 𝜖-tree can be characterized by 
a finite directed graph where nodes of the same label are merged, just 
as the following definition describes.

Definition 4.1 (𝜖-graph [29]). An 𝜖-graph 𝐺𝐴


of 𝐴 with regard to an 
equivalence relation  is a weighted directed graph formed by merging 
nodes of the same label in an 𝜖-tree 𝑡𝐴


into one node. A node in 𝐺𝐴


is 

called a sink node if its out-degree is 0. We denote the set of all sink 
nodes of 𝐺𝐴


by 𝑠𝑖𝑛𝑘(𝐺𝐴


).

Based on the 𝜖-graph, we present our equivalence checking algo-

rithm for ground branching bisimilarity: GroundBranBisim(𝐴, 𝐵).

GroundBranBisim(𝐴, 𝐵) Equivalence Checking Algorithm.

Input: Two configurations 𝐴, 𝐵
Output: Whether 𝐴 ≃𝑔𝑏 𝐵
1: Compute R ∶= R𝐴 ∪ R𝐵
2:  ∶= {R}
3:  ∶= PreRefine()
4: (𝑏, (1, 𝛼, 2)) = FindSplit()
5: while 𝑏 = T do

6:  ∶= Refine( , (1, 𝛼, 2))
7: (𝑏, (1, 𝛼, 2)) = FindSplit()
8: if [𝐴] = [𝐵] then

9: return T
10: else

11: return F

The algorithm starts with computing the set 𝑅 of all configurations 
reachable from 𝐴 or 𝐵. It then iteratively constructs set 𝑅∕ ≃𝑔𝑏, i.e., 
the set of equivalence classes of 𝑅 under ≃𝑔𝑏. The iteration procedure 
starts with the coarsest partition  = {𝑅}, and then keeps refining the 
current partition by analyzing one-step difference until  satisfies the 
definition of ground branching bisimulation. It will surely terminate as 
the initial partition is finite, and after each iteration we will obtain a 
strictly finer partition. Moreover, when it terminates, the final partition 
7

is just 𝑅∕ ≃𝑔𝑏. Hence to decide whether 𝐴 and 𝐵 are bisimilar, we only 
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need to check whether 𝐴 and 𝐵 belong to the same equivalence class 
of the final partition. Now we describe the algorithm in detail.

4.1.1. Preprocess the partition

After computing the reachable configurations of 𝐴 and 𝐵, the proce-

dure PreRefine() is called to make a preprocessing of the partition. It 
simply refines the partition  according to 𝑞𝑣(𝑃 ) and tr𝑞𝑣(𝑃 )(𝜌) for each 
configuration ⟨𝑃 , 𝜌⟩ in the partition. After this procedure, all configura-

tions in the same subset of the refined partition will have the same free 
quantum variables and equal partial trace.

4.1.2. Find the splitter

According to the definition of ground branching bisimilarity, the 
splitter should be defined based on 𝓁-transitions and 𝑝-transitions. Let 
us take 𝓁-transition for example. Given an equivalence  on 𝐶𝑜𝑛 and 
two equivalence classes , ′ ∈ ∕𝐶𝑜𝑛. Now suppose there are two con-

figurations 𝐴1, 𝐴2 ∈  such that the 𝓁-transition 𝐴1 ⇝

𝓁
←←←←←←←→ ′ of 𝐴1

cannot be bisimulated by 𝐴2. In this case, the equivalence class  can 
be refined further using a splitter defined by the 𝓁-transition. According 

to the definition of 𝓁-transition, 𝐴1 ⇝

𝓁
←←←←←←←→ ′ is associated with a regu-

lar 𝜖-tree 𝑡𝐴1


satisfying that 𝐿 
𝓁
←←←←←←←→ 𝐿′ ∈ ′ for every leaf 𝐿 of 𝑡𝐴1


. As 𝐿

and 𝐴1 belong to the same equivalence class , the difference between 
𝐴1 and 𝐴2 about the existence of the 𝓁-transition can be exactly char-

acterized by the difference between 𝐿 and 𝐴2 regarding the existence 

of the one-step 𝓁 action. Thus when we use the 𝓁-transition 𝐴1 ⇝

𝓁
←←←←←←←→ ′

to define a splitter, it can be interpreted as a one-step state-changing 
transition between equivalence classes  and ′. Consequently, the pair 
(𝓁, ′) can be used as a splitter for .

The following definition of 𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟 then captures the above ob-

servation about splitters. Given a partition  and an equivalence class 
 ∈  , for any configuration 𝐴 ∈ , we define

𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟(𝐴)

= {(𝓁,′) ∣𝐴
𝓁
←←←←←←←→𝐴′ ∈ ′ ∧ (𝓁 ≠ 𝜏 ∨ ′ ≠ )} ∪

{(𝑝𝜏,′) ∣𝐴
∐
𝑖∈𝐼 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
∐
𝑖∈𝐼 𝐴𝑖 ∧ (∃𝑖 ∈ 𝐼. 𝐴𝑖 ∈ ′ ≠ )},

where the symbol 𝑝𝜏 is used to indicate any probabilistic action 𝑝𝜏
while do not specify the concrete probability value 𝑝. We further define 
the set of all possible splitters for  as follows:

𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟() =
⋃

𝐴∈
𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟(𝐴).

FindSplit() Find a splitter of the current partition.

Input: A partition 
Output: A splitter of  if there is one

1: for all  ∈ do

2: Compute the set 𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟() for 
3: for all (𝛼, ′) ∈ 𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟() do

4: if 𝛼 = 𝑝𝜏 then

5: 𝑆𝑝𝑙𝑖𝑡 ← SplitP(, ̂𝑝𝜏, ′)
6: if |𝑆𝑝𝑙𝑖𝑡| > 1 then

7: return (𝐓, (, ̂𝑝𝜏, ′))
8: else if 𝛼 = 𝓁 then

9: 𝑆𝑝𝑙𝑖𝑡 ← SplitL(, 𝓁, ′)
10: if |𝑆𝑝𝑙𝑖𝑡| > 1 then

11: return (𝐓, (, 𝓁, ′))
12: return (𝐅, (∅, 𝜏, ∅))

Now for each (𝛼, ′) ∈ 𝑇 𝑟𝑎𝑛𝑃𝑎𝑖𝑟(), according to the type of 𝛼,

FindSplit() will invoke SplitP and SplitL respectively.

• SplitP(1, ̂𝑝𝜏, 2): It splits 1 by using the splitter (𝑝𝜏, 2), which is 

associated with a 𝑝-transition. Firstly, for each configuration 𝐴 ∈
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SplitP(1, ̂𝑝𝜏, 2).

Input: A triple (1, ̂𝑝𝜏, 2)
Output: A partition of 1 according to the splitter (𝑝𝜏, 2)

1: Construct the set Init = {𝐴 ∈ 1 ∣𝐴 
∐

𝑖∈𝐼 𝑝𝑖𝜏
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→

∐
𝑖∈𝐼 𝐴𝑖 ∧ (∃𝑖 ∈ 𝐼. 𝐴𝑖 ∈ 2)}

2: Compute the partition Init = Init∕ =𝑝
3: Split ← SplitDeltaP(1, Init)
4: return Split

SplitDeltaP(1, Init).

Input: A pair (1, Init)
Output: A partition of 1
1: 𝐾 ← |Init|, {1, ⋯ , 𝐾} ← Init
2: for all 𝑖 ∈ [𝐾] do

3: 𝑡𝑜𝐶𝑜𝑛 ← 𝐓, Dec ←𝑖, Und ← 1 ⧵
⋃
𝑗∈[𝐾]𝑗

4: while 𝑡𝑜𝐶𝑜𝑛 = 𝐓 do

5: 𝑡𝑜𝐶𝑜𝑛 ← 𝐅
6: for all 𝐵 ∈Und do

7: if there exists 𝐵′ such that 𝐵 𝜏
←←←←←→𝐵′ ∈ Dec, 𝐨𝐫 there exists {𝐵𝑗}𝑗∈𝐽

such that 𝐵
𝑝𝑗𝜏

←←←←←←←←←←←←→𝐵𝑗 ∈Dec holds for all 𝑗 ∈ 𝐽 then

8: 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑖] ← 1, 𝑡𝑜𝐶𝑜𝑛 ← 𝐓
9: Und ← Und ⧵ {𝐵}, Dec ← Dec ∪ {𝐵}

10: for all 𝑖 ∈ [𝐾] do

11: ′
𝑖
←𝑖

12: for all 𝐵 ∈ 1 ⧵
⋃
𝑖∈[𝐾]𝑖 do

13: 𝑁𝑢𝑚 ← 0, 𝑚 ← 0
14: for all 𝑗 ∈ [𝐾] do

15: if 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑗] = 1 then

16: 𝑁𝑢𝑚 ←𝑁𝑢𝑚 + 1, 𝑚 ← 𝑗

17: if 𝑁𝑢𝑚 = 1 then

18: ′
𝑚
←′

𝑚
∪ {𝐵}

19: Rem ← 1 ⧵
⋃
𝑖∈[𝐾]

′
𝑖

20: if Rem = ∅ then

21: return {′
1, ⋯ , ′

𝐾
}

22: else

23: return {′
1, ⋯ , ′

𝐾
} ∪Rem

1, if it can perform a state-changing probabilistic transition, then 
we added it to the set Init. Then we construct the partition Init
for the set Init according to the equivalence relation =𝑝, which is 
defined as 𝐴 =𝑝 𝐴′ if and only if

𝖯 (𝐴
∐
𝑖∈[𝑘] 𝑝𝑖𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 2) = 𝖯 (𝐴
′

∐
𝑗∈[𝑘′] 𝑝

′
𝑗
𝜏

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 2).

In other words, configurations in Init are partitioned according to 
their respective normalized probability of leaving 1 to 2. Next 
the procedure SplitDeltaP is invoked to split 1 according to Init .

Now suppose Init = {1, ⋯ , 𝐾} (where 𝐾 = |Init|) and Und =
1 ⧵

⋃
𝑖∈[𝐾]𝑖. More specifically, for all 𝑖 ∈ [𝐾], SplitDeltaP will 

add all configurations 𝐵 ∈ Und which satisfy the following condi-

tions (denoted by Δ𝑖
𝑃

) into 𝑖, and form a new equivalence class 
′
𝑖
:

– There exists an 𝜖-graph 𝐺𝐵


with 𝑠𝑖𝑛𝑘(𝐺𝐵

) ⊆𝑖;

– For any other 𝑗 ∈ Init with 𝑗 ≠ 𝑖, there does not exist any 𝜖-
graph 𝐺𝐵


with 𝑠𝑖𝑛𝑘(𝐺𝐵


) ⊆𝑗 .

The remaining configurations are collected into a set called Rem. 
Now {′

1, ⋯ , ′
𝐾
} ∪Rem forms a refinement of 1.

We further explain how to verify the property Δ𝑖
𝑃

for every 𝑖 ∈ [𝐾]. 
Here we define a two-dimensional boolean array 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑖], with 
the first entry 𝐵 ∈ 1 ⧵

⋃
𝑖∈[𝐾]𝑖 and the second entry 𝑖 ∈ [𝐾]. We 

will ensure that 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑖] is set to 1 if and only if there exists 
an 𝜖-graph 𝐺𝐵


with 𝑠𝑖𝑛𝑘(𝐺𝐵


) ⊆ 𝑖. This will then imply that 𝐵

satisfies property Δ𝑖
𝑃

iff 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑖] = 1 and 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑗] = 0 for all 
𝑗 ≠ 𝑖. To check the existence of such 𝜖-graphs, we can proceed as 
follows for each 𝑖 ∈ [𝐾]: ⋃
8

1. Initialize Dec to 𝑖 and Und to 1 ⧵ 𝑗∈[𝐾]𝑗 .
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2. For each process 𝐵 ∈ Und , we consider the immediate transi-

tions of 𝐵. If there exists 𝐵′ such that 𝐵
𝜏
←←←←←←→ 𝐵′ ∈ Dec (i.e., this 

nondeterministic internal transition arrives Dec), or there ex-

ists {𝐵𝑗}𝑗∈𝐽 such that 𝐵
𝑝𝑗𝜏

←←←←←←←←←←←←←←→ 𝐵𝑗 ∈ Dec holds for all 𝑗 ∈ 𝐽 (i.e., 
all branches of this probabilistic transition arrive Dec), then we 
will set 𝐴𝑟𝑟𝑎𝑦[𝐵, 𝑖] = 1, delete it from Und , and add it into Dec.

3. Repeat step 2 until the set Dec does not change, the resulting 
set Dec will contain exactly these configurations 𝐵 satisfying 
that there exists an 𝜖-graph 𝐺𝐵


with 𝑠𝑖𝑛𝑘(𝐺𝐵


) ⊆𝑖.

SplitL(1, 𝓁, 2).

Input: A triple (1, 𝓁, 2)
Output: A partition of 1 according to the splitter (𝓁, 2)

1: Construct the set 𝐼𝑛𝑖𝑡 = {𝐵 ∈ 1 ∣𝐵
𝓁
←←←←←←→𝐵′ ∈ 2}

2: Split ← SplitDeltaL(1, 𝐼𝑛𝑖𝑡)
3: return Split

• SplitL(1, 𝓁, 2): It splits 1 by using the splitter (𝓁, 2), which is 
associated with an 𝓁-transition. Now for each configuration 𝐴 ∈ 1, 
if it can perform an 𝓁 action and evolve into a configuration 𝐴′ ∈
2, we add it into the set Init . Then the procedure SplitDeltaL will 
add all configurations 𝐴 ∈ 1 ⧵ Init which satisfies the following 
condition (denoted by Δ𝐿) into Init , and form a new equivalence 
class 𝑇 :

– There exists an 𝜖-graph 𝐺𝐵


such that 𝑠𝑖𝑛𝑘(𝐺𝐵

) ⊆Init .

The remaining configurations will be put into the set 𝐹 . Now 
𝑇 ∪𝐹 forms a refinement of 1.

SplitDeltaL(1, 𝐼𝑛𝑖𝑡).
Input: A pair (1, 𝐼𝑛𝑖𝑡)
Output: A partition of 1
1: 𝑡𝑜𝐶𝑜𝑛 ← 𝐓, Und ← 1 ⧵𝐼𝑛𝑖𝑡, Dec ←𝐼𝑛𝑖𝑡

2: while 𝑡𝑜𝐶𝑜𝑛 = 𝐓 do

3: 𝑡𝑜𝐶𝑜𝑛 ← 𝐅
4: for all 𝐵 ∈Und do

5: if there exists 𝐵′ such that 𝐵
𝜏
←←←←←→ 𝐵′ ∈ Dec, 𝐨𝐫 there exists {𝐵𝑗}𝑗∈𝐽

such that 𝐵
𝑝𝑗𝜏

←←←←←←←←←←←←→𝐵𝑗 ∈Dec holds for all 𝑗 ∈ 𝐽 then

6: 𝐴𝑟𝑟𝑎𝑦[𝐵] ← 1, 𝑡𝑜𝐶𝑜𝑛 ← 𝐓
7: Und ←Und ⧵ {𝐵}, Dec ←Dec ∪ {𝐵}
8: 𝑇 ←𝐼𝑛𝑖𝑡

9: for all 𝐵 ∈ 1 ⧵𝐼𝑛𝑖𝑡 do

10: if 𝐴𝑟𝑟𝑎𝑦[𝐵] = 1 then

11: 𝑇 ←𝑇 ∪ {𝐵}
12: 𝐹 ← 1 ⧵𝑇

13: if 𝐹 = ∅ then

14: return {𝑇 }
15: else

16: return {𝑇 , 𝐹 }

4.1.3. Carry out the refinement

Once a splitter (𝛼, 2) for some 1 has been identified, the procedure

Refine( , (1, 𝛼, 2)) can refine the partition  by using this splitter. 
According to the type of 𝛼, this procedure will invoke SplitP or SplitL

correspondingly to obtain the refined partition.

4.2. Correctness and complexity

As we have discussed earlier, GroundBranBisim will terminate in 
finite steps. We then show its correctness as the following proposition.

Proposition 4.2 (Correctness). Given two configurations 𝐴 and 𝐵, the al-
gorithm GroundBranBisim(𝐴, 𝐵) returns true if and only if 𝐴 ≃𝑔𝑏 𝐵.
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Refine ( , (1, 𝛼, 2)) Refine  according to the splitter (𝛼, 2) for 1.

Input: A partition  and a splitter (𝛼, 2) for 1
Output: A refined partition Refine for 
1: if 𝛼 = 𝑝𝜏 then

2: 𝑆𝑝𝑙𝑖𝑡 ← SplitP(1, 𝜑𝜏, 2)
3: else if 𝛼 = 𝓁 then

4: 𝑆𝑝𝑙𝑖𝑡 ← SplitL(1, 𝓁, 2)
5: Refine ←  ⧵ {1} ∪𝑆𝑝𝑙𝑖𝑡
6: return Refine

Proof. The algorithm first computes the set 𝑅 that contains all config-

urations reachable from 𝐴 and 𝐵. Then it forms the coarsest partition 
 = {𝑅} and refines it. We will show that when  cannot be refined 
further,  =𝑅∕ ≃𝑔𝑏. It then implies that [𝐴] = [𝐵] iff 𝐴 ≃𝑔𝑏 𝐵.

Suppose there exists a splitter (𝛼, 2) for some equivalence class 1, 
the algorithm will start a new run of Refine. Let 𝑘 denote the number 
of executions of Refine, and 𝑘 be the current partition  after the 
execution of Refine𝑘. It is easy to see that each 𝑘+1 is strictly finer 
than 𝑘. Let 𝑛 denote the total number of executions of Refine, then 
𝑛 ≤ |𝑅|.

We still need to show that each 𝑘 is no finer than 𝑅∕ ≃𝑔𝑏, in other 
words ≃𝑔𝑏 ⊆ 𝑘

holds for all 𝑘 ∈ [𝑛], where 𝑘 is the induced equiva-

lence of 𝑘. This is proved by induction on 𝑘. The base case is obvious. 
Now suppose ≃𝑔𝑏 ⊆ 𝑘

, we will show that ≃𝑔𝑏 ⊆ 𝑘+1
. Consider the 

execution of Refine𝑘+1. If the splitter for some 1 is of the form (𝑝𝜏, 2), 
we refine the set 1 into {1, ⋯ , 𝐾} ∪Rem. Now suppose 𝐴 ∈𝑖 for 
some 𝑖 ∈ [𝐾] and 𝐵 ∉ 𝑖, then (𝐴, 𝐵) ∉ 𝑘+1

. We need to show that 
(𝐴, 𝐵) ∉≃𝑔𝑏. We know that 𝐴 satisfies property Δ𝑖

𝑃
while 𝐵 does not. 

Hence there exists a 𝑝-transition 𝐴 ⇝𝑘

𝑝𝑖
←←←←←←←←→ 2 of 𝐴 which cannot be 

bisimulated by 𝐵. Thus by induction hypothesis ≃𝑔𝑏 ⊆ 𝑘
, we can ob-

tain that (𝐴, 𝐵) ∉ ≃𝑔𝑏. □

Before concluding this section, we analyze the time complexity of 
our equivalence checking algorithm and compare it with the one in 
[22] for ground weak bisimilarity.

Theorem 4.3. Let the number of configurations reachable from 𝐴 and 𝐵 be 
𝑛. The time complexity of the algorithm GroundBranBisim(𝐴, 𝐵) is (𝑛7).

Proof. Since 𝐾 = |Init| ≤ |1| ≤ 𝑛, the for loop at stage 2 of procedure

SplitDeltaP can run no more than 𝑛 times. Since |Und| ≤ |1| ≤ 𝑛, the

while loop at stage 4 can run no more 𝑛 times. In each iteration of the 
while loop, all possible one-step transitions for configurations in Und
need to be examined and can be done in (𝑛2) time. The resulting com-

plexity of SplitDeltaP is therefore (𝑛 ⋅ 𝑛 ⋅ 𝑛2) = (𝑛4), which implies 
that the complexity of procedure SplitP is also (𝑛4). Similarly, we can 
obtain that the complexity of SplitL is (𝑛3). Since there are 𝑛 configu-

rations in all and each configuration has at most 𝑛 different transitions, 
the inner for loop at stage 3 in procedure FindSplit can run no more 
than 𝑛2 times. Since SplitP has complexity (𝑛4) and SplitL (𝑛3), it 
follows that the overall complexity of FindSplit is (𝑛6). Every time

FindSplit is executed and returns T, we will obtain a strictly finer par-

tition. Then the while loop at stage 5 of GroundBranBisim can run 
at most 𝑛 times. It is not hard to see that the complexity of PreRefine

and Refine are (𝑛2) and (𝑛4), respectively. As we already know that

FindSplit works in (𝑛6) steps, summing the total shows that Ground-

BranBisim executes (𝑛2 + 𝑛 ⋅ (𝑛6 + 𝑛4)) =(𝑛7) stages. □

Remark 4.4. In [22], Qin et al. give a polynomial-time equivalence 
checking algorithm for the ground weak bisimilarity proposed in [4]. 
Here we give a brief analysis of the lower bound of the algorithm in 
[22]. Let the number of configurations reachable from 𝐴 and 𝐵 be 𝑛. 
As noted in [22], the total number of state pairs examined in the algo-
9

rithm is Θ(𝑛4). Now consider any such pair (𝐴, 𝐵). For each transition 
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of 𝐴, the algorithm uses the technique in [24] to check if there exists a 
weak matching transition for 𝐵. In [22], the authors reduce the weak 
matching transition checking problem to a linear programming prob-

lem. The number of variables and constraints in the LP problem are 
both Θ(𝑛2). Since the best algorithm for solving the LP problem with 
size 𝑁 has time complexity Ω(𝑁2), the time complexity to solving the 
reduced LP problem would be Ω(𝑛4). Thus the overall time complexity 
of the verification algorithm in [22] is Ω(𝑛8).

5. Conclusions and future work

In this paper, we propose a new branching bisimilarity for qCCS, 
which can be seen as a conservative generalization of van Glabbeek’s 
branching bisimilarity for classical CCS. Compared to the previous 
work, our branching bisimilarity is the first congruence relation that 
preserves branching structures of the quantum processes. We also pro-

pose a polynomial-time checking algorithm for the ground branching 
bisimilarity and show that it is computationally more efficient than the 
one in [22] for ground weak bisimilarity. In the future, we would like 
to develop efficient tools for automatic branching bisimilarity check-

ing, especially for applications like quantum communication protocols 
verification.
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